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1. LIVE/DEAD Fluorescence Cell Assays 

Cell viability was assessed with a LIVE/DEAD BacLight Bacterial Viability Kit (Molecular 

Probes) containing SYTO9 and propidium acid nucleic acid stains. Capsule-deficient K. 

pneumoniae cells were adhered to gelatin-coated glass disks prepared by the same method as for 

the AFM experiments. The disks were submerged in either Milli-Q water or 100 mM CaCl2 

solution for different time points, and then treated with a mixture of the stains. Viable and dead 

bacterial cells were fluorescently stained green or red, respectively. Cells were visualized, and 

images were captured using an inverted fluorescence microscope (DM14000B; Leica). For each 

type of cell, three independent samples in either Milli-Q water or 100 mM CaCl2 solution were 

analyzed at each time point. Cells were counted using the ‘Analyze Particles’ function in ImageJ.  

The ratio of damaged cells (red) to intact cells (green) was below 5% for up to 6 hours in the 

two different osmotic conditions (Fig. S1), indicating that the vast majority of cells remained 

viable in either Milli-Q water or 100 mM CaCl2 solution during the AFM experiments. The 

adaptation to osmotic stress is an intrinsic ability of bacteria,1 and they utilize different 

mechanisms to survive in various liquid environments with substantially varying osmolality.2 
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Fig. S1 Fluorescence images of capsule-deficient K. pneumoniae after immersion in different 

osmotic conditions. (a and c) are images of cells submerged in Milli-Q for 0 h (control) and 6 h 

(experimental group), respectively. (b and d) are images of cells submerged in 100 mM CaCl2 

solution for 0 h (control) and 6 h (experimental group), respectively. Scale bars: 20 m. 

 

2. Governing Relations Involved in the Indentation of a Bacterial Cell 

The cell envelope can be regarded as a stress-stiffening and orthotropic elastic material.3-5  

Since the cell envelope thickness is much less than the cellular radius ( 0.1t R  ),  thin shell 

approximation can be adopted.6 Therefore, the stress in the thickness direction is negligible, and 

only the in-plane stresses in the axial and circumferential directions need to be considered. The 

constitutive relationships between the incremental strain tensors ( d z , d  , and d z ) and the 

incremental stress tensors ( d  , and d z ) can be given by7  
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where z and  are the cylindrical coordinates; G , E  and E  are the shear modulus, and the 

Young’s moduli in the circumferential and axial directions, respectively. According to previous 

work,3 the cell envelope can be stiffened by turgor pressure, and the relationship between the 

circumferential Young’s modulus ( E ) and  the turgor pressure ( p ) can be expressed as 

 0 0E E p p


  , where 0E  is the elastic modulus at a reference turgor pressure, 0p , and the 

stress-stiffening factor,  , is 1.22.  

The strain-displacement relations for the bacterial cell can be given by 
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where zu , u and ru  are the displacement components in the axial, circumferential and radial 

directions, respectively. 

During AFM indentation, the bacterial cell balances the force exerted by the AFM probe. 

Because the bacterial cell was fixed on a substrate during the indentation, the inertial motion was 

negligible. In the absence of body forces, the stress tensors satisfy the equilibrium equation, 

div 0σ . For a thin cylindrical shell with a radius of R , we have the following equations in the 

axial and circumferential directions: 
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In addition, the turgor pressure p  is balanced by the equivalent elasticity of the cell envelope. 

The boundary condition of the inner surface of the cell envelope can be expressed as 

 t pR    (S.4) 
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where t  is the circumferential surface tension. 

The displacement boundary condition of the outer surface ( , 2, 0r R z    ) of the cell 

envelope can be expressed by 

  , 2,0ru R     (S.5) 

where   represents the indentation depth. 

Based on eqn (S.1) – (S.5), FEM simulations were performed to investigate the AFM-based 

nanoindentation of individual bacterial cells, and the scaling rules were derived to determine the 

turgor pressure and the Young’s modulus of the cell envelope. 

 

3. The Bacterial ‘Indentation rule’ and ‘Expansion rule’ 

Dimensional analysis is a widely used method to establish the scaling rules for dimensionless 

physical and geometrical parameters involved in experiments.8-10 The scaling rules obtained from 

dimensional analysis provided guidelines for the FEM simulations of indentation. The 

combination of dimensional analysis and FEM simulations enabled us to establish the scaling rules 

to quantify the nanoindentation response of bacterial cells. 

For the cell envelope of a bacterium, the nanoindentation force is a function of seven 

independent parameters: 

  ; , , , , ,F f E E p R t   (S.6) 

where   is the curvature radius of the AFM probe. 

In our simulation, the bacterial cell was modeled as a tube shape terminated with two semi-

spherical caps. Radial expansion of the cylindrical envelope under turgor pressure is governed by 
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the elasticity of the cylinder in the circumferential direction, E .3 The bacterial radius (R) under 

turgor pressure is a function of the reference radius 0R , E , p  and t , which is expressed as 

  0, , ,R g E p t R  (S.7) 

where 0R  is the radius of the bacterium at a reference pressure 0p . The introduction of 0p  and 

0R  is just required for obtaining dimensionless relationships (scaling rules) of the physical 

parameters involved in the radial expansion of inflated cylinder. The two parameters have little 

effect on the scaling rules, and the extracted turgor pressure and Young’s modulus from the 

experimental data. In this study, we selected a physiological turgor pressure (29 kPa) of Gram-

negative rod-shape bacteria as the reference turgor pressure.3  

For thin shells ( 0.1t R  ), we derived the following scaling rules according to the Kirchhoff–

Love theory:6 

    1; , , , , , ; , , , , ,f E E p R t f E E p R t     

   (S.8) 

    1

0 0, , , , , ,g E p t R g E p t R  

   (S.9) 

where   is a scale factor. 

We can further obtain the following equations:3 

    ; , , , , , ; , , , , ,f E E p R t f E E p R t          (S.10) 

    0 0, , , , , ,g E p t R g E p t R    (S.11) 

    2; , , , , , ; , , , , ,f E E p R t f E E p R t         (S.12) 

    0 0, , , , , ,g E p t R g E p t R     (S.13) 

where   and   are scale factors. 
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By combining eqn (S.6), (S.8), (S.10) and (S.12), while taking the circumferential Young’s 

modulus E  and the cell envelope thickness t  as basic quantities and applying the Buckingham 

 theorem,11 eqn (S.6) was formulated as 
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where   is a dimensionless function, and E E  is the orthotropic elastic ratio and termed 

‘ ’.   is a function of surface tension and given by:3 
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where the dimensionless parameters are defined as  0 0 0p p R E t , and  0 0pR p R  .  

AFM nanoindentation experiments show that the force F  depends linearly on the 

indentation depth   for the measured deformation region, indicating that the cell stiffness is 

independent on   in this region. By further taking into account that t is a constant, the scaling 

rule for the cell stiffness can be derived from eqn (S.14) and expressed as: 

 , ,
dF pR

k E t
d E t t









 
    
 

 (S.16) 

where E t  represents the lateral stretching modulus in the shell theory.5 From eqn (S.16), it can 

be seen that  k E t  only depends on  pR E t , the orthotropic elastic ratio   and the scaled 

probe radius t .  

According to the AFM probe manufacture’s specifications, the nominal curvature radius and 

cone angle of the probe are 20 nm and 15o, respectively. In the FEM simulation, we have tested 

probes with tip curvature radii between 6 to 25 nm ( 0.2 0.9t  ) at varied cone angles from 
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10 to 30o, and found that the dimensionless stiffness.  k E t . was independent on the curvature 

radius of the AFM probe (Fig. S2a). On the other hand, we also found that the value of   was ~ 

0.47 (Fig. S2b) by using eqn (S. 15) for a wide range of scaled tension   (set the turgor pressure 

p  from 1 to 500 kPa and the turgor-free radius from 300 to 600 nm), and implying that the effect 

of the orthotropic elastic ratio on  k E t  in the investigated region is negligible. As a result, 

from eqn (S16), the bacterial ‘indentation rule’ can be obtained: 

 1

pR
k E t

E t




 
   

 
 (S.17) 

where 1
  . 

Similarly, by applying the Buckingham  theorem and scaling rules (eqn (S.9), (S.11) and 

(S.13)) to eqn (S.7), we can obtain the bacterial ‘Expansion rule’, expressed as: 

 2

0 0

E tR
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  (S.18) 

where 2  is a dimensionless function. According to eqn (S.18), the dependence of 0R R  on 

 0E t pR  can be explicitly solved. 
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Fig. S2 Effects of the curvature radius of the AFM tip and the orthotropic elastic ratio on 

indentation response. (a) Indentation curves under different probe radii. Inset shows the reduced 

stiffness k E t  under the scaled probe radius t . (b) The reduced stiffness vs. pR E t  for 

different ratios  , namely, 0.45, 0.46, 0.47, 0.48 and 0.49. Inset shows the indentation stiffness.

k . against the turgor pressure p  in log-log plot.   

 

According to the scaling rules shown in eqn (S.17) and (S.18), the dimensionless stiffness 

and radius are only determined by the dimensionless parameters  pR E t  and  0E t pR , 

respective. We selected a physiological turgor pressure (29 kPa) of Gram-negative rod-shape 

bacteria as the reference turgor pressure and simulated the nanoindentation of individual cells with 

turgor pressure within the range of 1 – 500 kPa.3, 5, 12 In the simulations, the reference Young’s 

modulus of the cell envelope 0E , the stress-stiffening exponent  , the orthotropic ratio  , 

equivalent envelope thickness t , turgor-free bacterial radius fR , and the cell cylindrical part 

length cyL  were set at 49 MPa, 1.22, 0.47, 26 nm, 500 nm, and 2000 nm, respectively.3 By fitting 

the FEM simulated data (Fig. 4), we obtained closed forms of the scaling rules, expressed as: 

 1 ln
k pR pR

a b c
E t E t E t  

   
       

   
 (S.19) 

 0
2
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E t pR AE tR

R pR B E t pR C





  
   

  
  (S.20) 

where the coefficients 0.09a  , 0.05b  , 0.28c  , 0.18A  , 0.95B   , 4.47C  . 
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These fitting coefficients depict important features of the expansion rule (Fig. S3). Constant 

A,    
1

0 0 0 min 0A E t p R p p
 

  , denotes the minimum of the dimensionless quantity for the case 

of the scaled radius close to zero, corresponding to the possible minimum of turgor pressure ( minp ) 

for the collapse state of bacterial cells. Constant B, 0 maxB R R , is associated with the maximum 

scaled cell radius, which means that bacteria can prevent abrupt cell shape change during changes 

in external osmotic environment. This is consistent with the stress-stiffening effect of the bacterial 

cell. In addition, constant C describes the expansion rate as the dimensionless quantity 0E t pR .  

 

Fig. S3 The meaning of the fitting coefficients A, B, and C in the expansion rule. A (circle point) 

represents the value of 0E t pR   for the case of the scaled radius close to zero. 1 B   is the 

maximum scaled cell radius (square point). C controls the expansion rate of the bacterial cell as 

the dimensionless quantity 0E t pR  increases. In this example, the values of the parameters are: 
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A, 0.18; B, 0.95; C, {2, 3, 4, 5, 6}. 

 

4. Applicability of the Developed Scaling Rules to Bacterial Cells with Different Physical 

Parameters 

Due to the individualisms of bacteria, bacterial cells can be different in lengths, radii and 

envelope thicknesses. Therefore, it is necessary to examine whether our developed rules can be 

applied to cells with varied physical parameters or not. Firstly, we investigated the influence of 

the bacterial length on the cell stiffness. A representative example is shown in Fig. S4a, from which 

we can see that the cell stiffness is nearly a constant (0.041 ± 0.001 N/m) and independent on the 

cell length (0.5 to 3.0 m for the turgor-free length of the cylindrical part of the cell). This can be 

easily understood by considering that the length scale of the contact between the AFM tip and the 

bacterial envelope in our system is in the order of 10 nm, which is about two orders of magnitude 

smaller than the length scale (m) of the cylindrical part of the cell. Then, we verified the 

applicability of the ‘Indentation rule’ (eqn (S.19)) to bacterial cells with different turgor-free radii 

( fR , 300 – 600 nm) and envelope thicknesses (20 – 45 nm) under turgor pressures from 1 to 500 

kPa. Representative results are shown in Fig. S4b and c, respectively, from which it can be 

observed that the ‘Indentation rule’ is in well agreement with the FEM simulated data. Finally, we 

tested the applicability of the ‘Expansion rule’ (eqn (S.20)) to bacterial cells with different turgor-

free radii (300 – 600 nm) and envelope thicknesses (20 – 45 nm) under turgor pressures from 1 to 

500 kPa. Representative examples are demonstrated in Fig. S4d and e, respectively, from which it 

can be seen that the ‘Expansion rule’ is highly consistent with the FEM simulated data. According 

to the available information, here we have considered all of the possible lengths, radii, envelope 

thicknesses and turgor pressure of rod-shape Gram-negative bacteria that could be measured in 

real experiments. The above results confirm that our scaling rules (eqn (S.19) and (S.20)) can be 
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well applied to extract the turgor pressure and envelope elasticity of rod-shape Gram-negative 

bacteria. 
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Fig. S4 Verification of the applicability of the scaling rules to rod-shape bacteria with various 

lengths (of the cylindrical part of the cell), radii and envelope thicknesses under a wide range of 

turgor pressure. (a) FEM simulated stiffness (red square) of bacterial cell with different lengths 

(0.5 to 3.0 m for the turgor-free length of the cylindrical part of the cell). The dashed line indicates 

the mean value (0.041 N/m) of the simulated data. In the FEM simuations, the turgor-free radius 

of the cell, cell envelope thickness, and reference turgor pressure were set at 500 nm, 26 nm, and 

29 kPa, respectively. The scaling rules are compared with the FEM simulation results for cells (b 

and d) with different turgor-free radii (300 – 600 nm), and (c, e) with different envelope thicknesses 

(20 – 45 nm) under turgor pressures from 1 to 500 kPa. Other parameters used in the FEM 

simulations for (a-e) include : ρ = 20 nm; 0 49 MPaE  ; 1.22  ; 0.47  .  

 

5. Fitting the Experimental Data with the Bacterial ‘Indentation Rule’ and the ‘Expansion 

Rule’ 

5.1 Procedures of Using the Rules to Extract Turgor Pressure and Envelope Elasticity  

The experimental data can be fitted by using our developed rules to obtain the cell envelope 

elasticity and cell turgor pressure. Firstly, the cell stiffness ( k ) and radius ( R ) were measured 

from the AFM nanoindentation force profile and AFM topographical image of the cell. Secondly, 

when 0p p , we have 0R R , then  0 0 0E t p R  can be derived from eqn (S.20), viz: 

 0

0 0 1

E t A C

p R B



 


 (S.21) 

Thirdly, we can rewrite the scaled inflated radius 0R R  as eqn (S.22) by substituting   and  

 0 0E E p p


   into eqn (S.20): 
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where the stress-stiffening exponent   is the intrinsic property with a value of 1.22.  

Finally, the turgor pressure can be expressed as eqn (S.23) by substituting eqn (S.21) and (S.22) 

into eqn (S.19): 
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0 0 0

ln
pk a p c p

b
p R p p p
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 (S.23) 

Since 0p ,  ,  , a , b  and c  are all known, the turgor pressure p  can be obtained by 

solving eqn (S.23) with inputting the measured cell radius R and stiffness k from AFM experiments. 

Once p  is known, the circumferential Young’s modulus E  can then be extracted by solving 

eqn (S.19) with inputting the bacterial envelope thickness and stiffness. The axial Young’s 

modulus E  is equal to 0.47E . 

In our study, the extracted turgor pressures for K. pneumoniae cells in Milli-Q water and 100 

mM CaCl2 solution are 212 ± 7 kPa and 59 ± 3 kPa, respectively. The extracted orthotropic moduli 

for the cells in the Milli-Q water are 516 ± 60 MPa in the circumferential direction and 243 ± 28 

MPa in the axial direction while those for the cells in CaCl2 solution are 87 ± 17 MPa in the 

circumferential direction and 40 ± 8 MPa in the axial direction, respectively. 

 

5.2. Verification of the Developed Scaling Rules by Fitting the Experimental Data in Literature 

In the work of Deng et al.,3 they combined their eqn (2), the relationship  0 0=E t E t p p


 , 

and the information obtained by FEM simulation (Fig. 4) to fit their AFM experimental data (Fig. 

3). In this method, the lateral stretching modulus5   ( 0E t  )and the radius ( 0R ) of the 
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bacterium at a reference turgor pressure ( 0p ), together with the stress-stiffening exponent  , 

determine the extracted values of the bacterial turgor pressure and envelope elasticity. In our 

method, these values are determined by eqn (S.19) and (S.20), and  0 0=E t E t p p


 . Under the 

conditions of 0 5 kPap   and 1.22  , Deng et al. obtained 0.026 N/m   and 0 464 nmR   

by using their method to fit their AFM data, and we obtained 0.029 N/m   and 0 410 nmR   

by using our method to fit the same set of data. For the same set of data under the conditions of 

0 29 kPap   and 1.22  , it can be obtained 0.22 N/m   and 0 550 nmR  by using Deng’s 

method, and 0.25 N/m   and 0 580 nmR  by using our method. In both cases, the results are 

highly consistent with each other. This excellent agreement indicates the good reliability of our 

developed rules. 

 

6. Stability of the Identified Solutions 

FEM simulations allow us to determine the explicit dimensionless functions (eqn (S.19) and 

(S.20)) with dimensionless parameters  pR E t  and  0E t pR  varying in a wide range of 

values. Determining the turgor pressure and the cell envelope elasticity using eqn (S.19) and (S.20) 

represents an inverse problem.13 The reliability of the equations can be assessed by analyzing the 

stability of the inverse problem. The stability is determined by the sensitivity of the developed 

rules to small changes in the experimentally measured parameters and can be quantitatively 

evaluated by the condition number.10, 13  

The condition number of the turgor pressure can be defined as 

  
 

 
3

1

3

p
p

p p p





 
  (S.24) 
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where the dimensionless function      1 1 1 1

3 lnp a p p b c p
           , 0p p p .  

To determine the condition number of the circumferential Young’s modulus E , we firstly 

need to combine eqn (S.21) and (S.22) and the stress stiffening rule  0 0E E p p


   to obtain 

    

1 1

0 0
0

0

,
p p p

E Rp t A B C p R
p p p



  

 



       
                     

 (S.25) 

Then the relative error of E  
can be given as 

 
   

2

, ,
E p R p R

p R p Rp R

p R
     



 
   
   

14
 (S.26) 

where 2 , p  and R  are the condition number of E , the relative error of the turgor pressure and the 

radius of bacterial cells, respectively. E  has the same condition number as E  because they are linearly 

related ( E E  ). 

The obtained condition numbers ( 1  and 2 ) of the turgor pressure and the orthotropic 

elastic modulus are 0.90 and 1.21 for the bacterial cells in Milli-Q water, respectively, and 0.91 

and 1.21 for the cells in 100 mM CaCl2 solution, respectively. The results indicate that the obtained 

turgor pressure and envelope elasticity are reliable on the consideration of that the condition 

numbers in all cases are close to one.14 In addition, we also computed the condition numbers for a 

wide range of scaled turgor pressures between 0.03 and 17.2, corresponding to turgor pressures 

between 1 – 500 kPa. In addition, according to the stress stiffening rule, E  are ranged between 

0.68 and 1576 MPa when the scaled turgor pressures are in the range between 0.03 and 17.2. 

As shown in Fig. S5, the condition numbers are all close to one, indicating that our developed 

rules are reliable for wide ranges of turgor pressures and elastic moduli. 
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Fig. S5 The condition numbers ( 1  and 2 ) for the turgor pressure and Young’s modulus, 

respectively.  
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