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To investigate the nature of the different states presented in Fig.
3 of the main article, we used several quantities defined below in
the first section. In the rest of the document, these quantities and
others are used to characterize the different phases observed in
terms of dynamics and local microstructure.

1 Definitions of the computed quantities

The nematic order parameter Snem has already been defined in
the paper. It is used to characterize the alignment of the platelets
and its temporal evolution is also used to check if an arrested or
equilibrium state is reached.

The 1D radial distribution function is computed as

g(r) =
1

4πr2Npρ

〈
Np

∑
i=1

Np

∑
j 6=i

δ (r− ri j)

〉
(1)

where the bracket 〈.〉 denotes an ensemble average, Np the num-
ber of particles, ρ the mean density, ri j the distance between the
centers of gravity of particles i and j, and δ the Dirac delta func-
tion.

The structure factor is

SL(qqq) =
Np

∑
i=1

Np

∑
j=1

〈
exp
[
−iqqq · ri j

] 〉
(2)

where qqq stands for the incident scattering vector, ri j = r j−ri, and
the subscript L refers to the system size, i.e., a three dimensional
simulation box of length L and volume L3. Due to the finite size
of the system and its periodicity, the microscopic density is en-
forced to be a periodic function. Thus, the values of admissible qqq
must be commensurate with the box length, corresponding to the
periodicity of the system1 and can be defined as:

qqq =
2π

L
(nx,ny,nz) (3)

where nx, ny and nz are any integers. It is important to stress that
any vector ‖qqq‖ smaller than 2π/L is nonphysical. The static struc-

ture factor will often be represented as a function of the modu-
lus q = ‖qqq‖ to provide information concerning the arrangement of
percolated structures and glassy states. Due to the relatively small
number of particles simulated and the small box size, the function
SL(q) could sometimes appear to be sampled too coarsely at low
scattering vector. The only way to improve this is to increase the
size of the box.

The incoherent (one particle) part of the intermediate scatter-
ing function F(qqq, t, tw) is the time correlation function of the den-
sity in the Fourier space:

FL(qqq, t, tw) =
1

Np

Np

∑
i=1
〈 exp [−iqqq · (ri(t + tw)− ri(tw)) ] 〉 (4)

where t and tw are respectively the time and the waiting time.
The latter corresponds to the aging time at which the intermedi-
ate scattering function starts to be computed. This function pro-
vides information concerning the dynamic behavior of the parti-
cles. The aging time needed experimentally for suspensions of
Laponite to reach the ergodic regime varies from hours to months
or even years, depending on the volume fraction and the ionic
strength. Although we are working at higher concentrations com-
pared to experiments, we do not expect to be able to reach an
ergodic state and, therefore, to evaluate the ergodicity breaking
time. Despite the fact that our simulations are short compared
to experiments, we are able to capture behaviors similar to those
obtained experimentally for both gels and glasses by Jabbari and
coworkers2,3, Ruzicka et al.4,5 and numerically using Brownian
dynamics by Mossa and coworkers6.

The orientational correlation function is represented by the av-
erage of the second Legendre polynomial of the azimuthal angle
θ between the normals of two plate-like particles.

P2(r) =
〈

1
2

(
3cos2

θ(r)−1
)〉

. (5)

where θ = arccos(ni ·n j), and ni and n j are the normal vectors
of particles i and j. When P2(r) = −1/2 the particles are perpen-
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Fig. 1 Example of a snapshot of the microstructure. Each color rep-
resents a cluster except for the white color which represents particles
without contact (see the particle in the red circle).

dicular while P2(r) = 1 refers to parallel particles. The combi-
nation of the radial distribution and orientation pair distribution
functions provides a good insight into the microstructure of the
system. Nevertheless, these functions do not furnish any infor-
mation concerning the formation of a gel state, or any percolated
structure.

We introduced a criterion of distance to determine when two
or more particles are connected and form a cluster: if the gap be-
tween two spheres of distinct plate-like particles is less than 0.2 a,
where a is the radius of one sphere, the particles are considered
in contact. Using this criterion, Figure 1 gives an example of a
snapshot where particles belonging to the same cluster will be
represented using the same color, as in the main article. A parti-
cle without any contact is colored in white, as pointed out by the
red circle in Figure 1.

It is also interesting to compute the mean azimuthal angle
< θ > defined previously but for touching particles only. This
allows investigating the possible correlation between this angle
and the position of the contact relative to the center of gravity of
the particles. The distance between the contact point in red in
Figure 2 and the center of gravity of the particle will be referred
to as the "touching distance". This combination of both the angle
and the touching distance allows a quite complete insight into the
spatial arrangement between particles in contact.

2 Glassy states in region "A" of Fig. 3 in the main
article

The simulations reported in region A were run with κD = 1.46.
At such a long range of interaction, the double layers strongly
overlap for the full range of volume fractions investigated here.
An analysis of the interaction force between an isolated couple of

Fig. 2 Definition of the touching distance between two disk-shaped par-
ticles. The red point corresponds to the contact point, and the touching
distance is defined as the distance between the center of gravity of par-
ticle i and the contact point.

platelets at κD = 1.46 shows that they are almost always repul-
sive unless they are nearly touching in overlapping coin configu-
ration.7 This strong repulsion is due to the large face charges. At
low volume fraction, the system is thus expected to be strongly
repulsive. At higher volume fraction, some overlapping coin con-
figurations may be found if platelets can pass the high energy
barriers with the help of crowding effects.

Arrested states are often characterized by examining the
incoherent intermediate scattering function. In particular,
the waiting-time dependence of the non-ergodicity parameter
F(q,∞, tw) and of the short-time translational diffusion coefficient
present marked differences in the glass and gel states.2 The in-
coherent intermediate scattering function is reported in Figure 3
for φ = 0.124, q = 2π/L with L the length of the cubic box, and
for four different waiting times tw. The lack of any significant de-
cay on the available time window (F > 0.96) clearly shows that
the system is arrested. The same dynamical behavior is observed
for lower volume fractions but the curves are not reported here.
The complete decay of F cannot be observed due to the diffi-
culty to reach very long physical times in the present numerical
simulations (the present ASD simulations are devised to resolve
hydrodynamic interactions and are thus much slower than Brow-
nian dynamics such as in the study of Mossa and coworkers6 for
example). Therefore, the ergodicity breaking time and the non-
ergodicity parameter cannot be estimated here and F is of limited
help.

However, the simulations readily allow us to estimate transla-
tional diffusion coefficients at short times Ds at different waiting
times from a computation of the mean squared displacements.
Jabbari and coworkers2 observed that Ds(tw) remains approxi-
mately constant and larger than 0.7Ds(0) in glasses. This slowed
down but continuously maintained diffusive motion corresponds
to the well known "rattling in the cage". In gels, Ds decreases
very strongly with tw and reaches values as low as 0.3Ds(0) near
the ergodicity breaking time. In this case, the strong reduction
of the diffusion coefficient is due to the bonds formed during the
percolation of the gel network. The diffusion coefficients corre-
sponding to translations perpendicular and parallel to the platelet
director are reported in Figure 4 as a function of the waiting time.
For all the volume fractions investigated, they remain above 0.6 at
all waiting times in region A, and they do not show any obvious
decay. This indicates that the systems in region A of Fig. 3 in the
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Fig. 3 Incoherent (one particle) intermediate scattering function for φ =

0.124 and κD = 1.46. The term tw stands for the waiting time in non-
dimensional time units.
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Fig. 4 Evolution of the parallel (empty symbols) and perpendicular (filled
symbols) diffusion coefficient normalized to its infinitely dilute value,
(D(⊥,0) and D(‖,0)), at κD = 1.46.

main article are glassy.
The osmotic pressure reported in Fig. 5 shows that the sus-

pension is strongly repulsive in region A, at κD = 1.46. The static
structure factor is reported in Figure 6a for φ = 0.05 and for differ-
ent time windows, and it is reported in Fig. 6b for other volume
fractions and the last time window. It does not evolve with the
increase of the "aging" time, in agreement with the assumption of
a non-ergodic arrested state within the available simulation time
window. The low q behavior confirms that the system has a very
low compressibility.

Snapshots in Fig. 7 reveal that among these glass structures,
two different final arrested states are observed: a disconnected
structure at φ = 0.05 (white platelets are not bonded) and a sys-
tem highly compressed with structures more and more intercon-
nected as the volume fraction increases. These non-bonded and
bonded glasses are identified by the red star and blue triangles in
Fig. 3 of the main article, respectively. Let us emphasize that even
if the systems at the highest volume fractions do percolate, the
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Fig. 5 One component model osmotic pressure computed from eq. (13)
in the main article.
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(b) For φ = 0.075, 0.10 and 0.124, at the largest waiting time.

Fig. 6 Static structure factors in region A (κD = 1.46) and for different
waiting times and volume fractions.
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(a) φ = 0.05 (b) φ = 0.075

(c) φ = 0.10 (d) φ = 0.124

Fig. 7 Snapshot of the microstructure at equilibrium for φ = 0.05, 0.075,
0.10 and 0.124 at κD = 1.46.

osmotic pressure is very high and they would immediately melt
upon dilution. These systems have centers of mass locked in elec-
trostatic cages due to the strong long-range repulsions between
faces, but rotational degrees of freedom are used to minimize the
global energy by reducing the face-edge distances when possible,
leading to these connected structures.

The radial and angular distribution functions presented in Fig-
ure 8 provide a good insight into the microstructure of the dis-
connected glass at φ = 0.05. The primary peak of g(r) is reached
between 2.27 R and 2.43 R. Over this range of distance, one can
observe in Figure 8b that the orientational correlation function
exhibits a kind of plateau at P2(r) = 0.43 indicating that neighbor-
ing particles tend to often favor a roughly parallel configuration,
although this is far from a truly nematic state.

For volume fractions larger than 0.075, contacts exist in the
glassy phase and the number of connected particles in a "cluster"
increases with φ (see Fig. 7). Some overlapping coin configu-
rations are observed, especially at the lowest volume fractions
(see the two particles in olive color on the center in Figure 7b).
In Figure 9a, one can clearly notice that increasing the volume
fraction above 0.05 shifts drastically the peak of the radial distri-
bution to lower values. Most of the particles are at a distance
equal to r/R≈ 1.5 from their neighbors. The intensity of the peak
increases and is slightly shifted to lower values with the increase
of volume fraction. The radial distribution functions of the par-
ticles in contact only (Figure 9b) also exhibit a peak at 1.5R but
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Fig. 8 Center of mass radial distribution (left) and second Legendre
polynomial function (right) for φ = 0.05 and κD = 1.46.
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Fig. 9 Center of mass radial distribution functions for long-range elec-
trostatic interactions: κD = 1.46.

with an intensity several times lower than that of the g(r) of all
particles (see Figure 9a) indicating that only a small fraction of
the particles located at this distance are in contact.

The angular correlation functions are reported in Figure 10.
In Figure 10a, it can be seen that considering all the particles at
the most probable distance of 1.5R (in contact or not) P2 depends
strongly on the volume fraction and indicates parallel particles at
φ = 0.075 and more or less random orientations for higher con-
centrations. In contrast, when focusing on particles in contact
only (Figure 10b), the large value of P2 at the same most probable
distance indicates parallel particles. Therefore, in these glasses,
touching particles are mainly in overlapping coin configuration.
Note however that there is a small portion of particles at smaller
distances (1.3R< r < 1.4R) (Fig. 9a) and that they generally show
P2 ' −0.4, indicating that some T-shape local configurations also
exist.
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Fig. 10 Second Legendre polynomial functions for long-range electro-
static interactions, κD = 1.46.
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(a) φ = 0.05

(b) φ = 0.075

Fig. 11 Snapshot of the microstructure at equilibrium for φ = 0.05 and
φ = 0.075 at intermediate-range electrostatic interactions, κD = 7.3. An
example of particles in T-shape configuration is circled in yellow and and
one of particles in OC configuration is circled in red.

3 Aggregated states in regions B and C in the main
article.

In regions B and C the interaction range is reduced so the face-rim
attractions can compete with face-face repulsions efficiently. This
leads to fully or almost fully aggregated states as shown in Fig.
11, with denser zones and large voids in region B. This is typical
of gels or phase separating systems.

The structure factors computed at the maximum accessible ag-
ing time and κD = 7.3 and 14.6 indicate quite compressible sys-
tems, with the signature of large scale correlations at the lowest
volume fractions (Fig. 12a and 12b). The evolution of SL(0) with
aging time is reported in Fig. 12c and 12d. It increases contin-
uously in time for φ = 0.05 and φ = 0.075 whereas it saturates
for higher volume fraction. Such a behavior was also obtained
in experiments by Ruzicka and coworkers who observed a phase
separation and a static structure factor greater than one at low
q for suspensions of Laponite at low volume fraction.8 In more
concentrated systems, these authors reported an equilibrium gel
state with SL(0)< 1.9 Regions B and C in Fig. 3 of the main article
seem to correspond to these phase separation and an equilibrium
gel states, respectively.

In order to confirm this, the translational diffusion coefficients
at short times are reported in Figure 13 for κD = 14.6 and for
the different volume fractions. They decay globally below 0.6

during the simulation time, in contrast to what was observed for
the glassy phase in region A. According to the results of Jabbari-
Farouji and co-workers,2 this is the behavior of a percolated phase
aging with more and more efficient bonds. Thus, the evolution of
short time diffusion coefficients with aging time seems to confirm
the phase separation process in region B and gel state in region
C.

Osmotic pressure values in regions B and C are nearly vanish-
ing for κD = 7.3 and oscillate around zero for larger values of
κD.(Fig. 5) This is in stark contrast with the very repulsive glassy
systems of region A. These vanishing pressures result from the
combination of attractive electrostatic interactions and hard-core
exclusion forces.

We now turn to the examination of the details of the mi-
crostructure at κD= 7.3 (red square and green diamonds in Fig. 3
of the main article). The difference in the microstructure between
the suspension at φ = 0.05 and suspensions at higher volume frac-
tions is not very clear on the radial distribution function given in
Figure 14a. g(r) always exhibits a large peak at a distance of 1.35R
irrespective of the volume fraction and the system is rather amor-
phous at larger distances.The angular correlation functions pre-
sented in Figure 14b do not help to discriminate between the dif-
ferent structures. A useful indicator is the probability Pθ that two
touching particles take a certain angle θ at their contact point. It
is represented in Fig. 15 for φ = 0.05 and φ = 0.075. In this fig-
ure, the mean distance to contact (cf. section 1) is also reported
as < r/R >, and it does not seem to be correlated to the contact
angle. Strikingly, at φ = 0.05, Pθ exhibits a sharp peak for angles
from θ = 5 to 12 degrees, which corresponds to the overlapping
coin configuration. Then, the probability of having a contact an-
gle θ > 20 degrees slightly decreases up to 45 degrees where two
consecutive broad peaks centered at respectively 55 and 78 de-
grees can be observed. These peaks are only half the intensity of
the peak observed at low contact angle, and one can wonder if
they are related to the coarse-graining of the particles. The drop
of Pθ at 90 degrees indicates that configurations close to a per-
fect right angle seem almost forbidden. It may be an unstable
configuration. At φ = 0.075 (and above), Pθ does not exhibit a
dominating peak at low θ values indicating that the OC configu-
ration does exist but is not favored anymore. All contact angles
seem to be quite equally likely, so a structure with both overlap-
ping coin and house-of-card arrangements is observed at κD= 7.3
and φ > 0.075.

For κD = 14.6 and 29.2, the local structure is reported to be
dominated by house-of-cards configurations in the main article
(purple crosses in Fig. 3). Snapshots are reported in Figure
16. At κD = 14.6 and irrespective of the volume fraction, the
system is fully percolated, and the particles appear to be in a
T-shape configuration. At κD = 29.2, isolated clusters and par-
ticles appear together with a percolated network for φ = 0.05 and
0.075, while higher volume fractions still generate a fully perco-
lated spanning network. It is possible that the isolated clusters
could diffuse and merge with the network for longer simulation
times. At φ = 0.05, g(r) exhibits one main peak at r = R for both
κD = 14.6 and κD = 29.2 (see Fig. 17a). At this distance, the cor-
responding value of the second Legendre polynomial reported in
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Fig. 12 Static structure factor at κD = 7.3, 14.6, different volume fractions and aging times.
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Fig. 13 Translational diffusion coefficients for κD = 14.6.
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Fig. 14 (a) Center of mass radial distribution and (b) second Legendre
polynomial function 14b for intermediate range of electrostatic interac-
tions.
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Fig. 15 Angle probability Pθ and mean distance to contact < r/R > for
κD = 7.3 .
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(a) κD = 14.6

(b) κD = 29.2

Fig. 16 Snapshot of the final microstructure obtained for φ = 0.05 and
intermediate-range electrostatic interactions.

Figure 17b is −0.4, which indicates that particles are in a T-shape
configuration. Note the absence of a peak at r/R≈ 1.35 of the ra-
dial distribution function, corresponding to the specific distance
of the OC configuration observed earlier for longer interaction
ranges. The radial distribution function exhibits a small second
peak at 2R corresponding to the second neighbor in a chain of
particles in a T-shape configuration, which is corroborated by the
peak on P2(r) at that same distance. To conclude, at φ = 0.05
and κD = 14.6 particles are mostly in the T-shape configuration.
The probability of the angle between particles in contact shows a
similar behavior for κD = 14.6 and κD = 29.2 (Fig. 18): no an-
gle below 20◦ is found and 90◦ configurations are favored. The
corresponding mean distance to contact is close to zero, which
is exactly the signature of T-shaped configurations. This T-shape
configuration is actually an energy minimum7, and as the energy
trap is weaker at κD= 29.2 than at κD= 14.6, one can understand
that more configurations can be explored around the 90◦ config-
uration at κD = 29.2. For increasing volume fractions, the same
general picture can be observed (see Fig. 17). The only notice-
able evolution is the decrease of the amplitude of the main peak
in g(r) with increasing volume fraction and the disappearance of
the secondary peak at r = 2R. This is due to crowding effects pre-
venting more and more platelets from reaching the favored 90◦

configuration. To summarize, at κD = 14.6 and 29.2 the house-of-
card configuration with an angle close to 90 degrees is preferred
to configurations with smaller angles. However, finite volume
fraction effects sometimes prevent particles from forming local ar-
rangements with the lowest free energy so angles lower than 90◦

are progressively more observed with increasing φ . The overlap-
ping coin configuration is not favored at these interaction ranges.
Hence the house-of-cards configuration has been observed at all
volume fractions, with a phase separation below φ = 0.08 and a
gel above. These results are in line with Delhorme and cowork-
ers10 and Ruzicka et al.9.

4 Liquid state in region "D" in the main article

When reducing even more the range of electrostatic interactions,
i.e., κD = 44 and κD = 73, the ratio between the attraction forces
and the Brownian forces is not high enough to allow the forma-
tion of permanent clusters (platelets appear in white, i.e. non-
bonded, on the snapshot in Fig. 3g in the main article). This state
was described by Ruzicka and coworkers9 and was placed above
the percolation line, in the liquid phase. The radial distribution
function is reported for φ = 0.05 in Fig. 19: it is very close to 1,
very noisy due to the lack of converged statistics in this strongly
fluctuating system, and the difference between structures with
electrostatic interactions and without them (κD = ∞) is not obvi-
ous. In this liquid phase at extremely short interaction range the
suspension behaves as a suspension of Brownian hard platelets.
Note that in practice, and as emphasized by Jönsson and cowork-
ers11, van der Waals interactions not included here will play an
important role in such high salt conditions so a more detailed
study of our results in this liquid phase is of very limited interest.
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Fig. 17 Radial distribution function and angle correlation for κD = 14.6 and 29.2.
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Fig. 18 Angle probability Pθ and mean distance to contact < r/R > at
φ = 0.05 for κD = 14.6 and κD = 29.2.
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Fig. 19 Radial distribution and angular correlation functions at φ = 0.05
for very short-range interactions . The black line stands for hard disks.
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A. MoussaÃŕd, T. Narayanan and F. Sciortino, Nature Materi-
als, 2011, 10, 56–60.
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