Supplementary material

Robotized algal cells and their multiple functions

Shuangxi Xie,^{ab} Lili Qin,^c Guangxi Li^b and Niandong Jiao*a

^aState Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 10016, China

^bSchool of Electrical and Mechanical Engineering, Pingdingshan University, Pingdingshan, Henan 467000, China

°School of Ceramics, Pingdingshan University, Pingdingshan, Henan 467000, China

*Corresponding author. E-mail: ndjiao@sia.cn

Movie S1 A swarm of C. reinhardtii cells swimming back and forth within the microfluidic channel.

Movie S2 A single *C. reinhardtii* cell with two PS beads attached swimming back and forth within the microfluidic channel.

Movie S3 The photochemical release of a PS microbead from C. reinhardtii cell.

Movie S4 Falciform microstructure rotating clockwise, cooperatively driven by two *C. reinhardtii* cells and three *C. reinhardtii* cells.

Fig. S1 (a) The simulation result of a *C. reinhardtii* cell swimming at 112.38 μm s⁻¹. (b) The simulation result of a *C. reinhardtii* cell carrying two PS microbeads swimming at 83.8 μm s⁻¹. White horizontal lines represent the streamlines. The color map shows the flow velocity distribution.

Fig. S2 The simulation result of the integrated structure spinning at 2.1 rad s⁻¹. White circles represent the streamlines. The color map shows the flow velocity distribution.