Electronic Supplementary Information

Stabilisation of hollow colloidal TiO₂ particles by partial coating with

evenly distributed lobes

Bo Peng,*^{ab} Yanyan Liu,^a Dirk G. A. L. Aarts^a and Roel P. A. Dullens*^a

^a Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of

Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.

^b Department of Applied Physics, Aalto University, Espoo FI-00076, Finland.

Corresponding authors:

Dr. Bo Peng, E-mail: pengbo006@gmail.com; Telephone: +358(0)50 511 6700

Prof. Roel P. A. Dullens, E-mail: <u>roel.dullens@chem.ox.ac.uk</u>; Telephone: +44(0)1865 275 478

Fig. S1. Size histograms and their normal fits of a) PS cores (corresponds to Fig. 1b), and b) PS-TiO₂ particles (Fig. 1c).

Table S1. Size and zeta potential characterization of PS and PS-TiO₂ particles.

	PS	PS-TiO ₂
Mean diameter (µm)	1.07	1.17
Polydispersity (%)	2.9	2.9
Zeta potential (mV)	+16.6	-8.5

Fig. S2. The powder of PS-TiO₂-TPM particles resulting from a scaled-up version of the synthesis. The particles yield was about 4 g.

Fig. S3. Characterization of hollow colloidal TiO₂ particles partially coated by TPM lobes. a) Transmission electron microscopy (TEM) image and b) selected area elemental analysis of PS-TiO₂-TPM particles. c) TEM, d) elemental analysis, e) selected area electron diffraction, f) high-resolution TEM, and g) grain size distribution of c-TiO₂-SiO₂ particles. After the calcination at 800 °C, the particles became hollow as shown in a) and c), and the abundance of C significantly decreased as can be inferred from comparing b) and d). This is ascribed to the thermal decomposition of PS and the transformation of TPM into SiO₂. In addition, the TiO₂ was annealed into poly-anatase crystals with a mean grain size of 6.02 nm as shown in e), f), and g). These results are consistent with the data shown in Figs. 1 and 3.

Fig. S4. Schematic model of the PS-TiO₂-TPM particles. *R*, *r*, θ , and *N* are the averaged radius of the PS-TiO₂ particles, the radius of TPM lobes, contact angle, and lobe number, respectively.

Fig. S5. Scanning electron microscopy (SEM) images of TPM coatings on PS-TiO₂ particles. The volumes of pre-hydrolysed TPM used are 0.3, 0.5, 0.7, 1.5, 2.0 and 3.0 ml in a)-f), respectively, with a C_{NH3} of 0.676 mM and C_{PVP} of 4.0 wt%. The scale bar is 500 nm in the insets. Increasing the volume of pre-hydrolysed TPM leads to an increase in *r* and the surface coverage of the shells and a decrease in *N*.

Fig. S6. SEM images of PS-TiO₂-TPM particles for different volumes of pre-hydrolysed TPM used: 0.3, 0.5, 0.7, 2.0 and 3.0 ml in a-f), respectively, with a C_{NH3} of 3.38 mM and C_{PVP} of 4.0 wt%. The scale bars are 1 µm and 500 nm in the insets, respectively. Increasing the volume of pre-hydrolysed TPM leads to an increase in *r* and the surface coverage of the shells and a decrease in *N*.

1.2 Characterization of calcinated PS-TiO₂-TPM particles

Fig. S7. X-ray diffraction (XRD) patterns of TiO₂-SiO₂ shells obtained at different calcination temperature (500-1000 °C). a) Uncoated PS-TiO₂ particles, and b) to h) corresponds to TPM

coated PS-TiO₂ sample shown in Fig. 2b-1 to 2b-7, respectively. X- and Y-axes are the 2θ and intensity (a.u.) as demonstrated at the lower right corner, respectively.

Batch no. ^{a)}	500 °C (nm)	600 °C (nm)	700 °C (nm)	800 °C (nm)	900 °C (nm)	1000 °C (nm)
TiO ₂	9.0	10	12.1/14.3 ^{b)}	15.5/18.7	19.1	22.6
2b-1	-	1.9	2.5	7	10/12.9	23.1
2b-2	-	2.7	4.8	6.1	16/15.9	20.4
2b-3	-	2.1	2.6	6.4	14.1	20.4
2b-4	-	2.0	3.5	5.6	10.9/14.8	19.7
2b-5	-	2.4	3.5	7.7	15.4	21.8
2b-6	-	1.6	4	6.8	10/12.1	22.2
2b-7	1.2	1.8	5.9	9.4	17.4/19.4	24.1

Table S2. A summary of TiO_2 crystal form and grain size from X-ray diffraction spectra in Fig. S7 as a function of calcination temperature.

^{a)} The batch no. corresponds to the sample number in Fig. 2, ^{b)} the blacks and reds denote the grain sizes of anatase and rutile crystals, respectively.

Fig. S8. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results of PS-TiO₂-TPM and PS-TiO₂ particles measured about 0 to 1000 °C. TGA result: stage 1, low boiling point chemical residual loss; stage 2, decomposition of PS; stage 3, decomposition of TPM and PVP; DSC results: stage 1, the endothermic process corresponding to the evaporation of low boiling point solvents; stage 2, the endothermic peak corresponds to the decomposition of the PS; stage 3, the endothermic peak maybe related to the decomposition of TPM; stage 4, the endothermic peaks at 600-900 and 900 °C for PS-TiO₂ and PS-TiO₂-TPM particles, respectively, refer to the anatase to rutile transition of TiO₂, which indicate the crucial role of TPM lobes in stabilising the anatase crystal phase; stage 5, the endothermic peak at 450 °C may refer to the decomposition of PVP.

Fig. S9. Raspberry c-TiO₂-SiO₂ particles (Fig. 2b-1 and S7b) calcinated at a) 500, b) 600, c) 700, d) 800, e) 900, and f) 1000 °C, respectively. The scale bar is 500 nm in the insets.

Fig. S10. Raspberry c-TiO₂-SiO₂ particles (Fig. 2b-2 and S7c) calcinated at a) 500, b) 600, c) 700, d) 800, e) 900, and f) 1000 $^{\circ}$ C, respectively. The scale bar is 500 nm in the insets.

Fig. S11. Raspberry c-TiO₂-SiO₂ particles (Fig. 2b-3 and S6d) calcinated at a) 500, b) 600, c) 700, d) 800, e) 900, and f) 1000 $^{\circ}$ C, respectively. The scale bar is 500 nm in the insets.

Fig. S12. Raspberry c-TiO₂-SiO₂ particles (Fig. 2b-4 and S7e) calcinated at a) 500, b) 600, c) 700, d) 800, e) 900, and f) 1000 $^{\circ}$ C, respectively. The scale bar is 500 nm in the insets.

Fig. S13. Raspberry c-TiO₂-SiO₂ particles (Fig. 2b-5 and S7f) calcinated at a) 500, b) 600, c) 700, d) 800, e) 900, and f) 1000 $^{\circ}$ C, respectively. The scale bar is 500 nm in the insets.

Fig. S14. Raspberry c-TiO₂-SiO₂ particles (Fig. 2b-6 and S7g) calcinated at a) 500, b) 600, c) 700, d) 800, e) 900, and f) 1000 $^{\circ}$ C, respectively. The scale bar is 500 nm in the insets.

Fig. S15. Raspberry c-TiO₂-SiO₂ particles (Fig. 2b-7 and S7h) calcinated at a) 500, b) 600, c) 700, d) 800, e) 900, and f) 1000 $^{\circ}$ C, respectively. The scale bar is 500 nm in the insets.

Fig. S16. SEM images of uncoated pristine TiO_2 shells (Fig. 1c and S7a) calcinated at a) 500, b) 600, c) 700, d) 800, e) 900, and f) 1000 °C, respectively. The scale bars are 1 μ m. Pristine TiO_2 shells cannot maintain their hollow structure during the calcination in the absence of TPM protection.

Fig. S17. UV-Vis absorption of coated and uncoated TiO_2 shells. The absorption peak of uncoated TiO_2 is about 290 nm, which is consistent with the absorption of anatase TiO_2 nanocrystals.¹ In contrast, the c-TiO₂-SiO₂ shells exhibit a broad absorption peak at around 310 nm, which may be caused by the SiO₂ nodules.²

1.4 Morphology Characterization of Uncoated TiO₂ Shells

Fig. S18. Uncoated TiO₂ shells that were obtained by removing the SiO₂ lobes of c-TiO₂-SiO₂ shells with NaOH after the calcination at a) 600, b) 700, c) 800, d) 900, and e) 1000 $^{\circ}$ C.

Fig. S19. a) and b) TEM observations of uncoated TiO_2 shells that were obtained by removing the SiO₂ lobes of c-TiO₂-SiO₂ shells with NaOH after the calcination at 800 °C. c) The grain size distribution corresponding to the TEM image in b) exhibits a mean grain size of 5.38 nm, which is slightly smaller than the grain size of TiO₂ shells prior to the NaOH treatment (c.f. Fig. S3g). This decrease may be ascribed to the dissolution of silicate between grains.

1.5 Stability Evaluation of Pristine, Coated, and Uncoated TiO₂ Shells after Photocatalysis

Fig. S20. Optical micrographs of a) uncoated TiO_2 shells (i.e., the same particles as in b) but *after* the removal of SiO₂ with NaOH) and b) coated TiO₂ shells (c-TiO₂-SiO₂, sample in Fig. S13d), and c) pristine TiO₂ shells after photocatalysis. The scale bar is 50 µm. The uncoated and pristine TiO₂ shells tends to aggregate during the photocatalysis, while the c-TiO₂-SiO₂ particles are stable.

Fig. S21. The photocatalytic activity evaluation of pristine TiO₂ shells during the degradation of rhodamine b isothiocyanate (RITC) under UV irradiation measured at the wavelength of maximum absorbance of RITC. a) The relative absorbance (C/C_0) as a function of the irradiation time using pristine TiO₂ shells calcinated at temperatures between 500 to 1000 °C; b) the corresponding fits to the data in a) to obtain the effective first order reaction rate constants (k).

2. Supplementary References:

- [1] H. Ceylan, C. Ozgit-Akgun, T. S. Erkal, I. Donmez, R. Garifullin, A. B. Tekinay, H. Usta, N. Biyikli, M. O. Guler, *Sci. Rep.*, **2013**, *3*, 2306.
- [2] A. Jaroenworaluck, N. Pijarn, N. Kosachan, R. Stevens, *Chem. Eng. J.*, **2012**, *181-182*, 45.