
S1: Theoretical estimation of mode number in an evaporating 
sessile droplet

The droplet volume during any stage of CCR mode of evaporation can be estimated as1 

 (S1)
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Where    and δ is a fitting parameter which is 1.994 for the 
𝜏=

16𝜌𝛿𝑟5𝑐

2𝐷𝑀𝐶𝑠(1 ‒ 𝑅𝐻)(4𝛿𝑟3𝑐 + 𝑉0)
present experiments, rc is the contact radius, D = 2.54 x 10-5 m2/s is the diffusion coefficient 
of water in air, ρ  is the density of water, Cs is the saturated concentration of water vapour at 
298 K, RH=0.5 is the relative humidity and M is the molar mass of water. The initial volume 
V0 = 5.0 µl is adjusted to account for the delay between the start of oscillation and the 
deployment of  the droplet.  

The resonance frequency for a spherical droplet is2

             (S2)
𝑓𝑛,1=
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Where n is the mode number (See Figure 3 of the manuscript), γ is the surface tension of 
water. Let us denote this as model 1. Taking square on both sides of equation 2 and 
rearranging the terms we get the cubic equation in n

 (S3)𝑛3 + 𝑛2 ‒ 2𝑛 ‒ 𝑘= 0

Where  and V=Vccr. Equation S3 is solved using the built-in function “roots” in 
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𝛾

Matlab. We consider the only real and positive root of the equation, since n is a positive 
integer by definition. The value of fn,1 is chosen as 400 Hz, 700 Hz and 900 Hz.

Sharp et al calculate the resonance frequency of an oscillating sessile droplet as3 explained 
in the manuscript
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This is model 2 for the present discussion. The profile length l=2rθc is back calculated from 
the volume calculate using equation S1. Equation S4 is also a cubic equation in n and is 
solved in the same way as equation S3. The values of n obtained from both models 1 and 2 
are plotted here.  
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Figure S1: Comparison between models 1 and 2 in estimating the mode number of an 
oscillating sessile droplet

Model 1 correctly predicts the initial value of the mode number while model 2 overpredicts. 
Model 1 also correctly predicts the total number of mode transitions during the droplet 
lifetime. This exercise is repeated for both models at frequencies 700 Hz and 900 Hz. In both 
cases, the analytical form used in model 1 gives a better result. 

S2: Correction factor for PDMS substrate
The method described in S1 is used to predict resonance in droplets on PDMS substrate. 
Equation 3 of the main manuscript is used to calculate the mass of the droplet undergoing 
CCA mode of evaporation on PDMS. Using equation S2, the predicted mode number is 
shown to be overpredicted by one at fn,1=400 Hz (Figure S2). However, if equation S2 is 
modified as

  (S5)
𝑓𝑛,1= 𝛼
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Where α is a correction parameter. Both Sharp et al and Sanyal and Basu report α~0.8. 
Using this value, the mode number is calculated and shown in Figure S2. We have used this 
approach in calculating n for the droplet on the PDMS substrate.

 



Figure S2: n estimated from fn,1 (equation S3) and corrected αfn,1 (equation S5) where α=0.8.
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