Cross-linked polyelectrolyte microspheres: preparation and new insights into electro-surface properties

Natalia Shevchenko, ^{a *} Elena Tomšík ^b, Svetlana Laishevkina^a, Olga Iakobson^a and Galina Pankova^a

^aInstitute of Macromolecular Compounds, Russian Academy of Sciences

Bolshoy pr., 31, Saint-Petersburg, 199004, Russia

^bInstitute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 2, Prague, Czech Republic.

AUTHOR INFORMATION

Corresponding Author

Dr. Shevchenko N.

natali.shevchenko29@gmail.com

Fig. S1. Optical microscopy of PSt and sulfonated PSt-SO3 microspheres.

Fig. S3. FTIR-ATR spectra of polyelectrolytes microspheres with PVA in the surface layer.

The peak at 1025 cm⁻¹ represents the symmetric stretching vibration of the SO3-groups which is significantly lower than that of the ketone groups.

Fig. S3. SEM images of polyelectrolytes PNaSS6 microspheres and their respective particle size distribution. (C.V. 52%). C.V.= (Mean/ Standard Deviation)*100%.

Fig. S4. Optical microscopy of polyelectrolyte PNaSS6 microspheres after removal of cyclohexane (scale bars 10 μm)