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S1. MODELS

The two models represent systems that consist of N = 2000 (unless otherwise specified) bi-disperse (BD) and poly-
disperse (PD) spheres. The bi-disperse system consists of N equal-mass spheres with a diameter ratio D1/D2 = 1.4
and a number ratio N1/N2 = 1. The PD system contains N equal-mass spheres whose diameter distribution is
characterized by P (D) ∼ D−3, for Dmin ≤ D ≤ Dmin/0.45. In both the BD and the PD models, the particles interact
via a purely-repulsive, harmonic potential, vij(r) = 1

2 (1 − r/Dij)
2 (zero if r > Dij), where r is the inter-particle

distance and Dij = (Di + Dj)/2, is the just-touching distance between particles i and j. The volume fraction is

φ = ρ(1/6)πD3, where ρ is the number density N/V , and V is the volume of simulation box.

S2. SIMULATION DETAILS

A. Constant volume athermal quasi-static shear

(i) In the BD model, constant volume athermal quasistatic shear (AQS) simulations are carried out using
LAMMPS[1]. To simulate a uniform simple shear deformation, at each step an affine transformation is applied
to the position of each particle, x′ = x + δγ × z, y′ = y, z′ = z, where δγ = 10−4, followed by energy minimization
using the conjugate gradient (CG) method. The CG procedure stops when the maximum component of the force
vector is less than 10−16. The energy minimization stops when the maximum distance moved by any particle is less
than the machine precision during an iteration. The norm of the equilibrium net force vector is of the order of 10−13

and the maximum component is of the order of 10−14 at the termination of minimization.
(ii) In the PD model, the affine transformation is applied with the same step size δγ = 10−4, followed by energy

minimization using the FIRE algorithm [2]. The minimization procedure stops when the percentage of force balanced
particles with net force magnitude |f | ≤ 10−14 reaches 99.5%.

B. Constant pressure athermal quasistatic shear

In constant pressure AQS simulations, the energy minimization is replaced by the minimization of enthalpy H =
U +PV at the imposed pressure P . (i) In the BD model, the minimization stops when the maximum distance moved
by any particle during a minimization step is less than the machine precision. (ii) In the PD model, the minimization
stops if the percentage of force balanced particles reaches 99.5%, and the deviation from the target pressure is less
than 10−4.

C. Protocols to prepare initial configurations

(i) Mechanical annealing by cyclic AQS for the BD model. We first use the method in [3] to generate packings
with jamming density φJ ≈ 0.648. The initial configurations are hard-sphere (HS) configurations at a packing
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fraction of φ = 0.363, which are equilibrated using the Monte-Carlo (MC) algorithm. We switch to the harmonic
soft-sphere potential, rapidly compress the configurations by rescaling the volume of the simulation box (till βP/ρ
decays to ∼ 1000, where β is the inverse temperature), and remove the resulting overlaps by using MC simulations.
The temperature is then switched off, and the system is further quasistatically compressed, by inflating the particles
uniformly, followed by energy minimization using the CG method. The compression stops when the energy per particle
e = E/N , after minimization, remains above 10−16. This is used as the criterion for jamming. Then the system is
slowly decompressed till e < 10−16, which generates configurations corresponding to jamming density φJ ≈ 0.648.

We then use mechanical annealing to increase the jamming density from φJ to φj > φJ . The configurations obtained
from the above procedure are compressed to various over-jamming densities φ > φJ , and are unjammed using cyclic
AQS, γ = 0→ γmax → 0→ −γmax → 0, where the strain amplitude γmax = 0.07 [4], and the strain step δγ = 10−3.
These configurations correspond to jamming densities φj > φJ . See FIG S12 for the dependence of φj on protocol
parameters.

(ii) Thermal annealing by a swap algorithm for the PD model. We first prepare dense equilibrium HS configurations
at φg, using the the swap algorithm [5]. At each swap MC step, we exchange the positions of two randomly picked
particles as long as they do not overlap with other particles. Combined with standard event-driven molecular dynamics
(MD), such non-local swap moves significantly speed up the equilibration procedure. The poly-dispersity of the model
suppresses crystallization even in deep annealing, and optimizes the efficiency of the algorithm [5].

For each equilibrium configuration at φg, we then perform a rapid quench to generate the jammed configuration at
φj (see Ref. [6] for the relationship between φg and φj). In particular, the J-point state at φJ ' 0.655 are quenched
from random initial configurations with φg = 0 [7]. The rapid quench is realized by inflating the particle sizes
instantaneously to reach the target density, switching to the harmonic soft-sphere potential, and then minimizing the
total potential energy using the FIRE algorithm [2]. The same jamming criterion is used as in the BD model.

D. Calculation of the stress tensor and the pressure

The stress tensor is calculated using the formula,

σ̂ = − 1

V

∑
i<j

~fij ⊗ ~rij , (S1)

where ~fij and ~rij are the inter-particle force and distance vectors between particles i and j. The pressure P is related
to the trace of the stress tensor, P = −(σxx + σyy + σzz)/3, which can be written as,

P =
1

3V

∑
i<j

~fij · ~rij . (S2)

S3. ADDITIONAL DATA FOR SHEAR JAMMING

The unjammed configurations at a density φ, where φJ < φ < φj , undergo shear jamming when subjected to steady
shear at constant volume. Shear jamming can be detected by a sharp increase in the stress σxz and in the coordination
number ZNR with increasing strain, as shown in Fig. 1. Additionally, FIG S1 shows how the pressure P and the
potential energy PE increase with strain. In the mechanical annealing protocol, the shear jamming strain γj , which is
indicated by an abrupt jump of the pressure P in FIG S2, is always greater than γmax = 0.07, the training amplitude
used in the cyclic shearing.

We also calculate the macroscopic friction µ = σxz/P of the configurations as a function of γ − γj (FIG S3), which
shows a peak in the cases when there is a significant overshoot in the stress-strain curve (Fig. 1). This peak, appearing
after the shear jamming strain γj , also exists in the uniform shear of over-compressed systems (FIG S4). In both
cases, the peak occurs near the yielding point.
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FIG. S1. Evolutions of a-b) pressure P and c-d) potential energy PE with strain γ during shear jamming. The
constant volume uniform AQS is applied. Data are presented for a few different φ and φj , obtained in both BD and PD systems.
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FIG. S2. Shear jamming under uniform shear in mechanically annealed BD systems. The pressure increases abruptly
as the system is strained beyond γ = γmax, indicating shear jamming. We present multiple realizations for each φj , where
φj = 0.659 (green), 0.656 (red), and 0.654 (black). The densities at which shear is carried out are φ = 0.656 (green), 0.653
(red), and 0.650 (black).
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FIG. S3. Macroscopic friction µ as a function of distance from jamming strain γ − γj for a) BD and b) PD
systems. The jamming strain γj is identified as the strain at which σxz increases above 10−11 in BD systems, and above 10−8

in PD systems.
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FIG. S4. Microscopic friction µ of over-compressed systems (Pinit > 0, φ > φj) as a function of strain γ under
constant volume shear. Data are plotted for two different φj and four different Pinit in both BD and PD models.
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S4. ADDITIONAL DATA FOR THE DILATANCY EFFECT UNDER CONSTANT PRESSURE SHEAR

Figure S5 shows that, under constant pressure shear deformations, the degree of dilation δφ = φinit − φs, which is
the difference between the initial density φinit and the steady-state density φs, increases with the jamming density
φj for a fixed pressure P , or decreases with P for a fixed φj .
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FIG. S5. Degree of dilation in constant pressure shear deformations. a) and c) Degree of dilation δφ as a function
of φj for a given pressure P , and b) and d) as a function of P for a given φj .

S5. FINITE SIZE ANALYSIS OF THE J-POINT DENSITY φJ AND CRITICAL STATE DENSITY φc

BD model. The jamming density φJ is identified using multiple cycles of compressions and decompression follows.
Starting from the randomly initialized configuration, the system is compressed in steps of δφ = 5 × 10−4 till energy
per particle is above 10−6. Here the jamming density has been crossed. Then δφ is divided by 2 and the configuration
is decompressed till system is unjammed. A system is considered unjammed if the energy per particle is less than
10−16. This cycle is repeated till δφ < 10−6 and the jamming density is identified during the decompression.

These configurations at the jamming density are compressed to various finite pressures P = Ps and sheared using
constant pressure AQS. The steady state packing fraction φs(Ps) is measured and φc is estimated by fitting the data
with linear relation Ps ∼ φs − φc.

We average over a number of configurations to calculate φc and φJ , for N = 250, 500, 1000, 2000, 4000. For φc, we
have used 72,56,10,10,10 configurations respectively, and for φJ we have used 500,500,500,100,100 configurations.

PD model. Our analysis is based on simulation data obtained from systems that consist of N = 250, 500, 1000,
2000, 4000 particles, with 256, 192, 128, 64, 64, 64 independent samples respectively.

To estimate the J-point density φJ , we follow the procedure employed in Ref [8]: starting from a random initial
configuration, the system is compressed and decompressed iteratively, followed with energy minimization after each
step, until reaching the jamming/unjamming threshold where the energy is infinitesimally positive. More specifically,
the particles are inflated instantly to increase the volume fraction by δφ = 5 × 10−4 during each compression step.
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FIG. S6. Finite size analysis of φJ and φc for the BD and PD model. a) and b) Densities φJ and φc as functions of
1/N . c) and d) The difference φc − φJ is plotted as a function of 1/N . The error bars represent standard errors.

After that, we minimize the energy of the system using the FIRE algorithm [1]. If the system is jammed (the residual
potential energy per particle after minimization is larger than 10−16), we decrease δφ by a factor of 2 and decompress
the system until it becomes unjammed. We perform a series of decompression and compression as described above,
until δφ < 10−6. Lastly, we perform an additional cycle of compression and decompression: the compression is
performed with δφ = 10−5 until the residual energy per particle is larger than 10−6, and the decompression is
performed with δφ = 10−6 until the system becomes unjammed. We identify this unjamming density as φJ .

To estimate the critical state density φc, we perform constant pressure AQS at a few different Ps, by minimizing
the enthalpy using the FIRE algorithm, and measure the volume fraction φs(Ps) when the stress reaches a constant
value. Then we extrapolate φc from φs(Ps) using the linear relation near the zero pressure limit.

The system size dependence of φJ and φc are shown in FIG. S6 a) and b), and the difference φc − φJ is plotted as
a function of the system size N in FIG. S6 c) and d). Our results show that φc is always slightly larger than φJ in
finite size systems, but the difference decreases with N . In this paper, we regard φJ ' φc in the thermodynamical
limit N → ∞. However, note that several previous studies [9–11] in two dimensions suggested that this difference
remains finite (around 0.001-0.002), even in the thermodynamical limit. We do not exclude such a possibility in three
dimensions based on our data.
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FIG. S7. Pressure P as a function of strain γ under constant volume shear deformations, for over-compressed
systems. The pressure increases from the initial value Pinit as the system is strained in both a) BD and b) PD systems.
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S6. DILATANCY EFFECT REVEALED BY PRESSURE INCREASE UNDER CONSTANT VOLUME
SHEAR

For over-compressed systems with a jamming density φj above φJ , the pressure P increases under constant volume
shear deformations, which is an effect equivalent to dilatancy in constant pressure shear. FIG S7 shows how the
pressure P increases from Pinit when the constant volume shear is applied, and FIG S4 shows the evolutions of the
macroscopic friction µ. We find that the peak in macroscopic friction is more prominent for configurations with a
larger φj . The scaling relationship between the steady-state macroscopic friction µs and pressure Ps, µs = µ0 − cP βs ,
is shown in FIG S8. Note that, in Fig. 1 of the main text and Sec. S3, the initial configurations are unjammed
(Pinit = 0 or φ < φj). In that case, the constant volume shear deformation firstly jams the system, and then increases
the pressure (see FIG S1).
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S7. ADDITIONAL DATA FOR EQUATIONS OF STATE

A. Equations of state of steady-states

Here we explain how to obtain the steady-state equations of state (EOSs) of pressure Ps(φs) and of stress σxz,s(φs).
For the EOS of pressure, we firstly calculate the average pressure-strain curve P (γ) = 〈P ind(γ)〉 in constant volume
shear simulations where the density φ = φs is fixed, or the average density-strain curve φ(γ) = 〈φind(γ)〉 in constant
pressure shear simulations where the pressure P = Ps is fixed. Here P ind(γ) and φind(γ) are the pressure and density
of individual samples at strain γ, and 〈. . .〉 represents the sample average. We then extrapolate the large-γ limits
of P (γ) and φ(γ) as the steady-state values Ps and φs. By varying the control parameter φs in constant volume
shear, and Ps in constant pressure shear, we obtain the pressure EOS Ps(φs) for both protocols (FIG S9). The same
procedure is applied to get the stress EOS σxz,s(φs).
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FIG. S9. Critical scalings of steady-states. We fit the EOS data of (a) pressure and (b) stress to Eqs. (S3) and (S4). The
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TABLE S1. Values of fitting parameters in Eqs. (S3), (S4), and (S5), for both BD (φj = 0.660) and PD (φj = 0.689) models.
The steady-state data, P0, φ

P
c , σ0 and φσc , are obtained from constant pressure shear; the constant volume shear gives the same

results because the EOSs are independent of shear protocols (see FIG S9).

P0 φPc σ0 φσc P ′0 φJ

BD 0.261 0.647 0.024 0.647 0.29 0.648

PD 0.217 0.656 0.021 0.656 0.21 0.655

To estimate the density φc of the critical state, we fit the EOS data Ps(φs) and σxz,s(φs) to the asymptotic linear
scalings near the zero pressure limit,

Ps(φs) = P0(φs/φ
P
c − 1), (S3)

and

σxz,s(φs) = σ0(φs/φ
σ
c − 1), (S4)

where P0, σ0, φ
P
c , φ

σ
c are fitting parameters (see FIG S9). The values of the fitting parameters are summarized in

TABLE S1, which show that consistently φPc = φσc within the numerical uncertainty. We therefore determine the
critical-state density as φc = φPc = φσc .

B. Equation of state of isotropic-jamming

We first measure the pressure P indiso (∆φ) at a given ∆φ = φ − φindJ for each individual sample, where φindJ is the
individual sample jamming density determined according to the jamming criterion described in METHODS. To do
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that, we compress the configuration from φindJ in small increments of density δφ = 10−4, up to the target density
φ > φindJ . We then average over samples to obtain the EOS, Piso(∆φ) = 〈P indiso (∆φ)〉. The isotropic jamming density
φJ is determined from the average value of φindJ , φJ = 〈φindJ 〉. The isotropic jamming EOS satisfies the linear scaling
near φJ ,

Piso(φ) = P ′0(φ/φJ − 1), (S5)

where P ′0 = 0.29 (BD model) and 0.21 (PD model) are used to re-scale Piso such that the isotropic jamming and the
steady-sate EOSs collapse onto the universal curve (Fig. 3a). The values of φJ and P ′0 are listed in TABLE S1.
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S8. ADDITIONAL DATA FOR THE GENERALIZED ZERO-TEMPERATURE JAMMING PHASE
DIAGRAM

In FIG S10 we show the generalized zero-temperature jamming phase diagram for the BD model. Similar to the
PD case (Fig. 4), the yield stress shows a discontinuous jump at φj for φj > φJ . This behavior is independent of the
definition of the yield stress, which can be seen from Fig. 4 where σY is defined as the steady-state value σs, and
from FIG S11 where σ′Y is defined as the peak value of the shear stress in the stress-strain curve (both figures are for
the PD model).
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function of φ.
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FIG. S11. Generalized zero-temperature jamming phase diagram for the PD model, where the yield stress σ′Y
is defined as the peak value of the shear stress in the stress-strain curve. The jamming density is φj = 0.689.
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S9. JAMMING DENSITIES OF MECHANICALLY ANNEALED BI-DISPERSE SPHERE PACKINGS
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FIG. S12. Dependence of jamming density φj on protocol parameters of cyclic AQS, for the BD model. a)
Dependence of jamming density φj on the strain amplitude γmax, for a fixed unjamming density φ = 0.650. b) Dependence of
jamming density φj on the unjamming density φ, for a fixed γmax = 0.07. Error bars represent standard deviations.

An over-jammed BD system at packing density φ (compressed from φJ ' 0.648), unjams under constant volume
cyclic AQS, and jams again at φj (φj > φ > φJ) upon a further compression. The jamming density φj depends
on both the unjamming density φ and the strain amplitude γmax of the cyclic shear. As shown in the FIG S12, φj
increases with γmax for a fixed φ, and increases with φ for a fixed γmax. In the main text, we use γmax = 0.07, because
for this amplitude, the largest range of densities over which unjamming occurs is obtained [4].

S10. PROPOSAL FOR EXPERIMENTAL VALIDATION

We propose to test the following procedure in experiments. The procedure was used in simulations of the BD
system in this study, and is expected to be reproducible in shear experiments of colloidal suspensions [12–14] and
emulsions [15]. Indeed, non-Brownian suspensions and emulsions have been experimentally investigated in contexts
related to our present work in the past.

1. Jamming by compression. Compress an initially unjammed system to an over-jamming density φ above φJ .

2. Unjamming by cyclic shear. Keeping the density as a constant at φ, after a sufficient number of shear cycles,
the system should unjam. Equivalently, the jamming density φj is uplifted from φJ to some value above φ.

3. Jamming by shear. Shear jamming is expected if uniform shear is applied under the constant volume condition
(keeping φ unchanged) to the unjammed system obtained from (2).

4. Dilatancy under shear. Compress the unjammed system obtained from (2), until it jams again at a higher
volume fraction φ′, where φ′ > φj > φ > φJ . The dilatancy effect is expected if uniform shear is applied
to this over-jammed system under the constant pressure condition (the pressure is finite since the system is
over-jammed).

In many experimental systems, friction is not negligible. It is known that the J-point density φJ(µ) decreases with
the inter-particle friction coefficient µ [16]. However, we expect that the above procedure will result in shear jamming
and dilatancy above φJ(µ) even µ > 0. In other words, the jamming density φJ(µ) should be shifted to a higher
value φj > φJ(µ) under cyclic shear, for any given µ. In fact, a very recent study of a 2D frictional system reported
simulation results showing that the jamming density increases with the strain amplitude of athermal cyclic shear (see
Fig. 10 of [17]), similar to our data obtained in the 3D frictionless systems (see Fig. S12a). Therefore, shear jamming
above the minimum jamming density φJ(µ) is observable in 2D frictional packings as well (see the phase diagram
Fig. 8 of [17]), although the effect seems to be subtler compared to the case of 3D frictionless packings (see the phase
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diagram Fig. 5 of [4]). In short, we expect that the procedure proposed in this manuscript should in principle work
in experimental systems even when friction is non-negligible.
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