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1 Measurement of magnetic susceptibility

We have performed a direct measurement of the magnetic susceptibility χ of the particles to verify
the values reported in the literature.1 In the experiment, we have tracked the distance between two
particles far from any other particle under the action of a vertical static magnetic field. Balance
between particle repulsion and viscous friction, which we suppose dominated by Stokes drag, leads to
the theoretical prediction of the interparticle radial velocity:
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where B is the magnitude of the field, η the fluid’s dynamic viscosity, µ0 the vacuum permeability, a
the particle radius, and r the interparticle distance. We fit this law to measurements of v = f(r) for
both particle types, M-450 and M-270, as shown in Fig. S1. The experiment is repeated for 20 particle
pairs of each type. The experiments are performed under two different field magnitudes for the two
particle sizes (B = 1 mT for M-450 and B = 4 mT for M-270) in order to keep an approximately
constant value of Γmag = Umag/(kBT ). Nevertheless, similar estimates of χ1 and χ2 are obtained if the
experiments are performed at constant B = 1 mT (not shown). The slope of the fits is constrained by
the theoretical prediction v ∝ r−4, whereas the intersect of each fit with the vertical axis provides the
estimate of χ. The resulting estimates of the magnetic susceptibilities are χ1 = 1.15 (M-450 particles)
and χ2 = 0.64 (M-270 particles), whereas the literature values are 1.63 and 0.76, respectively.1 The
difference may be due to the fact that our values are obtained by neglecting solid friction, which is
actually non-negligible. Moreover, particle diffusion in our experiments is significant and introduces
large experimental variability, as shown by the large error bars in Fig. S1. We note that in measuring
v = f(r) we have corrected for the diffusive effect on radial velocity v by measuring the particle
displacement along the initial interparticle direction, and not as the increase in interparticle distance,
which would lead to a overestimate of v due to particle diffusion.

The key parameter when comparing our theoretical model of the dynamics of cluster rotation to
the experiments presented in the main article is the ratio of magnetic susceptibilities, χ1/χ2. The
value of this ratio is 1.80 for our experimental estimates and 2.14 for the literature values used in the
article. Changing the value of this ratio will lead to changing Fig. 4(b) in the main article, which
would look as shown in Fig. S2.

The normalization remains satisfactory for the experimentally obtained value of the ratio χ1/χ2,
but it is less good than using the literature values. Because of the significant uncertainty in our direct
determination of the values of χ due to the reasons explained above, in the main article we have used
the values of χ reported in the literature.

2 Theoretical models

2.1 Dynamics of cluster rotation

The dipolar line tension acting at the edge of the two-dimensional cluster is2

λdip = λis + λanis cos(2Φ) , (S2)
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Figure S1: Experimental measurement of the radial velocity v between two identical paramagnetic
particles repulsing each other under the action of a vertical static magnetic field of magnitude B, as a
function of the interparticle distance r. Plot (a) corresponds to M-450 particles (B = 1 mT) and plot
(b) to M-270 particles (B = 4 mT). Error bars are standard errors. The black line is the theoretical
prediction, with the predicted slope v ∝ r−1/4 and a vertical offset fitted to the data. The figures are
presented as a log-log plot, whereas the insets show the same data using linear axes.

Figure S2: Redrawing of Figure 4b of the article, using the experimentally measured value of χ1/χ2 =
1.80 instead of the value reported in the literature and used in the main text (χ1/χ2 = 2.14).
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where Φ is the in-plane angle between the magnetic field and the vector normal to the cluster boundary.
λis and λanis are defined as follows:
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where P2 is the second Legendre polynomial, M̃ = nVpχB/µ0 is the cluster’s magnetization per
unit area in the continuum approximation, with n = 1/(2

√
3a2) the 2D particle density in a cluster,

Vp = 4πa3/3 is the particle volume, and χ is the magnetic susceptibility of a particle.
The cluster is subjected to two torques, magnetic and viscous. The magnetic torque is

τm = VcB
2 sin2(θ)χ′′eff/µ0 , (S5)

where χ′′eff = 3πau′′r/8R
2
c is the imaginary part of the effective magnetic susceptibility, and Vc = πR2

c 2a
is the cluster volume. The viscous torque is

τvisc = fηwR
3
cω , (S6)

where f = AπRcω
1/2/(2ν

1/2
w ) is the hydrodynamic drag coefficient of the cluster, assimilated to a

rotating flat disk near a wall,3 with ηw and νw the dynamic and kinematic viscosities of water,
respectively.

Balancing the two torques above gives:

u
′′
r =

8µ0 f ηwR
5
cω

3π aVcB2 sin2 θ
. (S7)

By solving the elasticity equation, −∇p+Gc∆u = 0, we find the following expression of the radial
component of the dynamic cluster deformation:2

ur =
−2λanisRc

3(λis +GcRc)
exp (−2iΦ) . (S8)

Inserting the complex shear modulus, Gc = G′c − iG′′c , into Eq. (S8) gives:

ur =
−2λanisRc [(λis +G′cRc) + i G′′cRc]

3[(λis +G′cRc)2 + G′′c
2R2

c ]
exp (−2iΦ) , (S9)

where the imaginary part of the radial distortion is:
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. (S10)

Cluster viscoelasticity is described by the Kelvin-Voigt model, Gc = K − 2i(Ω − ω)ηc. Thus, the
imaginary part of the radial distortion becomes:
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2
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2
c ]
. (S11)

By considering that Ω� ω, λis � KRc, and ηcΩ� K, Eq.(S11) becomes:

u′′r ≈
4λanisΩηc

3K2
. (S12)

By inserting Eq.(S12) into Eq.(S7), we find the following expression of the cluster’s angular velocity:
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We postulate that the dominant contribution to the storage shear modulus, Gc = K, arises from
steric interactions (see Eq. (3) and discussion in the main manuscript). Then, we find that the 2D
elastic modulus of the cluster, K, is expressed as

K = C a/ ln(Rc/a) . (S14)

By inserting the Eq.(S14) into Eq.(S13), we obtain our final expression of the cluster’s angular
velocity:
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with γ ≡
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.

2.2 Disassembly dynamics

The conservation equation of particles is

∂ρ

∂t
+ v
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)
. (S16)

In the mean-field approach, the dipolar potential energy of a particle i located at a distance r from
the cluster’s center is defined as:

Udip =
1

2

∑
j 6=i

Udip
ij , (S17)

with Udip
ij = µ0

4π
χ2
VB

2

l3ij
is the pair potential of two parallel identical dipoles, where lij is the distance

between the two dipolar particles i and j, and χV = χVp/µ0 with Vp the particle volume. Assuming a
triangular lattice with lattice constant l(r), the local density at a distance r from the cluster’s center
is given by:

ρ(r) = 2/[
√

3 l(r)2] , (S18)

By performing the sum in Eq.(S17) and using Eq.(S18), it has been shown that the dipolar potential
energy depends on the local density as:4

Udip =
2M

5

µ0

4π
χ2

VB
2ρ(r, t)3/2 , (S19)

where M ≈ 11.116 is a geometrical constant obtained by the sum of dipolar interactions among all
particles in an hexagonal lattice.4

Each particle is subjected to a radial magnetic force F = −∂Udip/∂r and to viscous friction, so
that its radial velocity is v = F/ξ, with ξ the friction coefficient. Using the result given by Eq. (S19),
we obtain

v = −ρ
1/2

β

∂ρ

∂r
, (S20)

with β = (20πξ)/(3Mµ0χ
2
VB

2). Equation (S16) becomes:
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with boundary conditions dρ/dr = 0 at r = 0 and ρ(R) = 0, where R is the cluster radius (note that
R(t = 0) = Rc).

To solve Eq. (S21), we assume that the density profile can be factorized as:

ρ(r, t) = ρ0(t)y(x) , (S22)
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where ρ0(t) = ρ(0, t) is the density at the cluster center, and x = r/R(t) is the dimensionless radial
distance. The conservation law of the total number of particles,

N =

∫ R

0
ρ(r, t)2πrdr = πρ0R(t)2I , (S23)

yields:

ρ0(t) =
N

πI

1

R(t)2
, (S24)

where I ≡
∫ 1

0 2y(x)x dx. Therefore, Eq. (S21) can be written as:
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where α is a separation constant. The temporal factor in Eq. (S25),
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∂t
= α , (S26)

has the following exact solution:
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The spatial factor in Eq.(S25) is:[
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with the following boundary conditions: y(0) = 1, dy/dx = 0 at r = 0, and y(1) = 0. The exact
solution of this equation is:

y(x) = (1− x2)α/4 , (S29)

with α = 8/3.

3 Supplementary Movies

Supplementary Movie 1
Self-assembly of paramagnetic particles (Dynabeads M-450) sedimented on the xy plane under a
rotating magnetic field contained in the plane (B = 1 mT, Ω = 2960 Hz). The movie shows the
beginning (1 minute) and the end (1 minute) of a 10-minute experiment, and it is accelerated 4 times.
The scale bar corresponds to 200 µm.

Supplementary Movie 2
Disassembly of a paramagnetic particle cluster (Dynabeads M-450) contained in the xy plane under
a constant field acting along the z direction (B = 0.9 mT). The field is switched on at the beginning
of the movie (t = 0) and kept constant throughout. The movie is accelerated 4 times. The scale bar
corresponds to 20 µm.
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