Electronic Supplementary Information (ESI)

Self-assembled luminescent cholate gels induced by europium ion

in deep eutectic solvents

Meng Sun^a, Qintang Li^b and Xiao Chen^{a,*}

^aKey Laboratory of Colloid and Interface Chemistry, Shandong University,

Ministry of Education, Jinan, 250100, China

^bSchool of Materials and Chemical Engineering, Xuzhou University of Technology,

Xuzhou, 221018, China

*Corresponding author: Xiao Chen

Address: Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of

Education, Jinan, 250100, China

E-mail: xchen@sdu.edu.cn.

Tel.: +86–531–88365420.

Gel Formation of NaC in ChU

Fig. S1 Photos of NaC gels in ChU at different concentrations.

Fig. S2 FTIR spectra of ChU, NaC and NaC gels.

Scheme S1 A schematic representation of possible molecular packing in NaC gel formed in ChU.

Fig. S3 Photos of a typical NaC (20 mM) / Eu^{3+} (200 mM) mixture solution sample formed in ChU

without (a) and with (b) illumination at 365 nm.

Fig. S4 SEM images of cross-section of NaC/Eu³⁺ xerogel (50 mM/50 mM) formed in ChG (a & b).

Fig. S5 SEM image and EDS results of NaC/Eu $^{3+}$ xerogels (50 mM/50 mM) formed respectively in

ChU (a & b) and ChEG (c & d).

Fig. S6 For NaC/Eu³⁺ (60 mM /20 mM) eutectogels in 1:3 and 1:4 ChCl/glycerol DESs, (a) emission $(\lambda_{ex} = 393 \text{ nm})$ spectra and (b) Time-resolved luminescence decay curves.

Table S1 Characteristic luminescence parameters for eutectogels at $C_{\text{NaC}}/C_{\text{Eu}}^{3+}$ (60 mM/20 mM) in 1:3 and 1:4 ChCl/glycerol DESs.

System	τ (ms)	Q (%)
1:3 ChCl/glycerol DES	1.21	46.50
1:4 ChCl/glycerol DES	1.09	41.98

Fig. S7 FTIR spectra of xerogels formed in ChU at $C_{Eu^{3+}} = 30$ mM and two different C_{NaC} .

Fig. S8 (a) ESI-MS spectrum of Eu³⁺/NaC supramolecular gel in ChG with (b) magnified part near 1359.7890 (m/z).

The coordination of NaC to Eu³⁺ in gel formed in ChG was characterized by electrospray ionization mass spectrometry (ESI-MS). The peaks at m/z of 817.5783 (Fig. S8a) and 1476.9381 (Fig. S8b) could be identified into the formula $[(C_{24}H_{39}O_5)_2H_3]^+$ and $[Eu(C_{24}H_{39}O_5)_3Ch]^+$ (Ch = choline cation). This result revealed that one Eu³⁺ ion was coordinated with three carboxyl groups. Although the quantification of the individual species by ESI-MS is not feasible, this technique is known to give a snapshot of species present in solution.¹

Calculation of the radiative (k_r) or nonradiative (k_{nr}) rate constants and quantum efficiency (Q)

Because of its stable intensity, the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition can be taken as a reference for the calculation of quantum efficiency (*Q*). On the basis of intensity parameters obtained from the emission spectra, the total radiative rate of ${}^{5}D_{0}$ can be given by eq. (1),

$$k_{r} = \sum_{J=0}^{4} k_{0 \to J} = k_{01} \sum_{J=0}^{4} \left(\frac{S_{0J}}{S_{01}} \right) \left(\frac{v_{01}}{v_{0J}} \right)$$
(1)

where S_{0J} and v_{0J} were the integrated intensities and energy barycentres of ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ ($J = 0 \sim 4$) transitions in the emission curves, respectively.^{2,3} k_{01} was the Einstein coefficient of spontaneous emission for ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition and could be determined as $\sim 50 \text{ s}^{-1}$ in air for solid samples.⁴

Based on the fitted lifetimes (τ), the total decay rate of ⁵D₀ (k_{tot}) could be calculated by eq. (2).^{2,3}

$$k_{\rm tot} = \frac{1}{\tau} = k_r + k_{nr} \tag{2}$$

Assuming that only nonradiative and radiative decay processes were involved in the depopulation of ${}^{5}D_{0}$ state, the emission quantum efficiency (*Q*) could be determined using the eq. (3).

$$Q = \frac{k_r}{k_r + k_{nr}} \tag{3}$$

REFERENCES

- Y. Qiao, Y. Y. Lin, Z. Y. Yang, H. F. Chen, S. F. Zhang, Y. Yan and J. B. Huang, *J. Phys. Chem. B*, 2010, **114**, 11725-11730.
- 2 Y. F. Shao, B. Yan and Q. P. Li, Eur. J. Inorg. Chem., 2013, 3, 381-387.
- 3 S. Y. Yin, H. Sun, Y. Yan, W. Li and L. X. Wu, J. Phys. Chem. B, 2009, 113, 2355-2364.
- 4 M. F. Hazenkamp and G. Blasse, *Chem. Mater.*, 1990, **2**, 2105-2110.