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This supplementary information contains five sections, providing additional information to further support the main text. In §S1 we
investigate the impact of the form of the residual velocity distribution, in terms of both the speed distribution and any perpendicular
component. In §S2 the depth dependence of flow-DDM for Poiseuille flow is presented; then in §S3, the q dependence of fits is detailed for
both Poiseuille and rheometric flow. Section S4 explicitly explores the extracted velocity distribution as a function of flow speed, before
finally in §S5 the behaviour of the far-field corrrelator is investigated.

S1 Impact of residual velocity distribution form
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Fig. S1 Impact of residual velocity distribution form. (a) Residual velocity distributions, P(∆v′) for: idealised uniform distribution, blue line; resulting
distribution from parabolic flow profile, P(∆v′) = 0.5/

√
2/3−∆v′ (orange line); and distribution accounting for contrast variation through optical section

using a Gaussian with standard deviation 0.35∆v, grey line. (b) Resulting ISF in perpendicular sector, f⊥, as a function of reduced delay time, τ/(q∆vθ).
Symbols: numerical results, see legend for corresponding P(∆v′). Line: analytic result of Eq. 10 for comparison.

In the main text, analytic results with a uniform velocity distribution, P(∆v′), are presented. This represents an idealisation of
experimental conditions, with a simplification of both the flow profile and any intensity variation with depth within the optical section. In
Fig. S1 we test the validity of both these assumptions by comparison of the analytic result (Eq. 10) with numerical results using a varying
P(∆v′). Significant differences in the form of P(∆v′) are seen when considering these complexities. For a uniform section of a parabolic
flow profile there is a divergence in the distribution, P(∆v′) = 0.5/

√
2/3−∆v′, Fig. S1(a) (orange line). The divergence originates from

the point of the flow profile in which the the gradient of the flow velocity is zero. The distribution is also skewed, with a elongated tail
towards negative ∆v′. We also approximate the variation of image contrast away from the centre of the focal plane with a Gaussian P(∆v′),
grey line.

The resultant ISF for the perpendicular sector can be calculated for by numerically integrating Eq. 10 over multiple delay times using
the Scipy Python library, Fig. S1 (points). The functional form is almost indistinguishable from the idealised uniform distribution in both
the analytic case (line) and numerical solution (blue points). In these results, the width of the Gaussian distribution was adjusted to a
standard deviation of 0.35∆v to give equivalent decorrelation times. This gives a relation between the full width half maximum and the
equivalent ∆v extracted from an assumed uniform distribution, FWHM = 0.82∆v.

Although this complete insensitivity to the exact shape of the velocity distribution might at first sight appear surprising, it is actually a
direct consequence of the proposed analysis protocol of flow-DDM. We deliberately choose to examine the dynamics in the direction
perpendicular to the flow where it is least sensitive to flow speed (and therefore also the speed distribution along the flow direction). If
we were to look parallel to the direction of flow, the dynamics would likely be sensitive to the exact shape of the flow profile, but this is
beyond the scope of this study.

So far we have worked on the assumption that the spread in velocities is only along the mean flow direction. Although this is
appropriate for simple linear flow geometries, such as the Poiseuille channel flow investigated first, this evidently does not hold in
general. Indeed, the rheo-confocal flow investigated in the second part of the manuscript actually has slightly curved flow lines, where
the radius of curvature, R, is set by the distance of the imaged region from the centre of the cone. This leads to a slight variation in
the direction of flow throughout the field of view and, therefore, a spread in speed perpendicular to the flow. Here we use a simple
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scaling argument to investigate the impact of curvature in such a rotational geometry. A flow with a radius of curvature R along an
image of length Lx will lead to a residual velocity spread with average magnitude vxLx/4R in the direction perpendicular to the flow. By
comparing decorrelation rates (i.e., timescales), we can approximately determine when diffusion dominates over the flow curvature. This
requires Dq2 > qvxLx/(4R), or rearranging: vx < 4DqR/Lx. For our experimental parameters (D = 0.16µm2/s, R = 20mm, Lx = 466µm and
q≈ 2.5µm−1) this suggests that curvature-induced residual velocities becomes relevant for speeds around 70µms−1. This condition is
satisfied within the range where we successfully applied flow-DDM (Section 4.2), and therefore it is still (just about) appropriate to treat
our rheometric flow data as curvature free. Two aspects of our data support the assertion that this simplified treatment is sufficient:
firstly, our finding that the point of failure scales with rate, rather than speed (as would be expected if curvature effects were dominant);
and secondly, the absence of strong oscillations in the ISF at and above the maximum shear rate where the diffusivity can be extracted
[see Fig. S3(e)] (as would be expected if significant velocities existed in the perpendicular sector, Eq. 6). However, it should be noted that
the transverse velocity distribution could easily turn into the dominant decorrelating effect for rheometric flow geometries if conditions
are not as carefully chosen, e.g. by imaging closer to the cone centre or deeper into the sample.

S2 Depth dependence in Poiseuille flow
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Fig. S2 Depth dependence in Poiseuille flow for flow-DDM measurement at Q = 10µl s−1, corresponding to 〈v〉 ≈ 350µms−1 in capillary centre.
(a) Extracted diffusion coefficient, 〈D〉, as a function of depth into capillary, z. Filled symbols, positions used in Fig. 6; open symbols, other positions;
and dashed line, rest measurement of 〈D〉. (b) Extracted velocity distribution, ∆v. Symbols as in (a). (c) Average drift-velocity, 〈v〉, with changing
depth.

At a given flow rate, Q = 10 µlmin−1, flow-DDM measurements can be made across the capillary width (z = 0 µm to 1000 µm),
Fig. S2(a). The average drift velocity varies across the channel, Fig. S2(c), reaching a maximum of 〈v〉 ≈ 350µms−1 in the centre of
the capillary; z positions used in Fig. 6 use filled symbols. This 〈v〉 lies within the range for which diffusion can be reliably measured,
Fig. 6. Looking across the depth of the capillary at this point, a failure of the technique is seen very near the wall, z≈ 0µm, with the
drift-corrected ISF in the perpendicular sector no longer diffusive; at such z an erratic response in D(q) for standard DDM is also observed.
Moving further away from the wall, a consistent 〈D〉 is measured across the channel. Similarly, the extracted velocity distribution,
∆v [Fig. S2(b)], appears to remain ≈ 50µms−1. This suggests that there are multiple contributions to the velocity distribution. For
temporal variation in Q and variation across the width of the channel, ∆v would be greatest in the centre of the channel. In contrast, the
contribution to ∆v from the finite optical section and a velocity gradient in z is greatest near the walls of the capillary. This suggests that
for this combination of imaging and flow geometry that away from the walls there is no preferred depth for minimising ∆v due to these
multiple contributions. However, for imaging methods with a greater depth of field it would be expected that the centre of the channel
would provide the optimal conditions, we therefore focus on the centre of the channel.

S3 Lengthscale dependence of fitting for flow-DDM
As detailed in Sec. 2, to optimally measure diffusion and size particles it is desirable to access the highest q (i.e. smallest lengthscales) and
fit Eqs. 4, 8–12 over the highest q range possible. This limit may be set by the frame rate, Dq2

max ≈ t f , or (as in this paper) the form factor.
We therefore require a q range where the signal is of a comparable magnitude to the noise, i.e. A/B > 0.3. However, A and B are from the
fit itself, and are not known a priori. Fortunately, in practice these can be estimated from a simple diffusive fit to the perpendicular sector
alone (anisotropic-DDM), which allows a determination of the appropriate q range for flow-DDM.

For full optimisation of the measurements, the q range would be selected for each movie separately. However, to allow systematic
comparison (with, for example, varying flow rate), we fix the q values used (using half integers) such that A/B > 0.3 for all movies.
Example fits from this restricted q range [3.0 µm−1 to 3.5 µm−1 for capillary measurements, grey shading in Fig. S3(c)] are shown at
a moderate flow rate [Q = 6µlmin−1 in Fig. S3(a)] and at a high flow rate [Q = 60µlmin−1, (b)]. At low flow rates the reconstructed
ISF is indistinguishable for both sectors (⊥/n⊥) and is diffusive in form. In contrast, at high flow rate the n⊥ sector decorrelates at
a shorter timescale than the ⊥ sector and with a steeper slope. In this instance f∆v controls decorrelation for n⊥ and diffusion for ⊥,
demonstrating the sector dependence of the impact of flow that can be used to estimate ∆v (and hence whether diffusion is measurable
for the ⊥-sector). A fit over a wider q range (1.0 µm−1 to 4.0 µm−1) shows that the impact of ∆v becomes more important at lower q
[where now tD > t∆v/3 and the fit of D(q) is erratic and > D0], thus justifying our use of a restricted high q range.
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Fig. S3 DICF fitting and q dependence. Poiseuille flow: (a) Reconstructed ISF at q = 3µm−1 with flow rate Q = 6µlmin−1 (z = 515µm). Symbols:
filled, perpendicular sector, ⊥ (θ = 3°); and, open, adjacent sector, n⊥. Lines, fit using Eqs. 4, 8–12 over both sectors with q =3.0 µm−1 to 3.5 µm−1

using a single ∆v and q-dependent D. (b) Reconstructed ISF at high flow rate, Q = 60µlmin−1, symbols as (a). Lines: solid, fit for perpendicular sector;
and, dotted, n⊥ sector. (c) q-dependent diffusion coefficient, D(q) over extended fit range q =1.0 µm−1 to 4.0 µm−1. Symbols: dark (purple) circles,
Q = 6µlmin−1; and, light (green) squares, Q = 60µlmin−1. Grey shading, q range used for 〈D〉. Lines, signal intensity, A/B, with shade correspondent to
Q: dashed, A/B = 1; and, dotted, lower threshold of A/B = 0.3, all for ⊥ sector. Rheometric flow: (d) Reconstructed ISF at q = 2µm−1 with shear rate
γ̇ = 0.1s−1 (h = 10µm). Symbols and lines as (a), θ = 7.5° and q =2.0 µm−1 to 2.5 µm−1. (b) Reconstructed ISF at high shear rate, γ̇ = 2.0s−1. Lines:
solid, fit for perpendicular sector; and, dotted, n⊥ sector. (c) q-dependent diffusion coefficient, D(q) over extended fit range q =1.0 µm−1 to 4.0 µm−1.
Symbols: dark (blue) circles, γ̇ = 0.1s−1; and, light (yellow) squares, γ̇ = 2.0s−1. Grey shading, q range used for 〈D〉. (d) Signal intensity, A/B for ⊥
sector. Symbols: colours as (d)-(f), filled symbols indicate h = 10µm and open symbols 20 µm. Dotted line denotes A/B = 0.3 for ⊥ sector.

Similar behaviour is seen with increasing shear rate for rheometric flow, Fig. S3(d) and (e). The q range was selected using the same
process, but note that a lower than desired q range [2.0 µm−1 to 2.5 µm−1, grey shading in Fig. S3(f)] must be used for images taken at
h = 10µm to allow an equal comparison with noisier images taken at h = 20µm [cf. open and filled symbols in (g)].

S4 Extracted velocity distribution
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Fig. S4 Residual velocity distribution with flow speed. (a) Poiseuille flow, extracted velocity distribution width, ∆v, as a function of flow speed in the
centre of the capillary, 〈v〉. Symbols, average of position, standard deviation given by error bars. (b) Rheo-confocal flow, velocity distribution as a
function of applied shear rate, γ̇. Symbols, extracted ∆v at different h, see legend. Line, estimate of linear dependence ∆v = γ̇ · (2µm).

In the main text we present the decorrelation timescale associated with the velocity distribution extracted from flow-DDM, t∆v, which
is of importance in determining the reliability of the diffusivity measurement, tD < t∆v/3. However, it is also useful to present ∆v explicitly
as a function of flow speed to make clearer the relation between the velocity distribution and the flow speed or applied shear rate. In
Poiseuille flow with averaging over positions in the centre of the capillary, the extracted ∆v increases roughly linearly with flow speed,
Fig. S4(a) (symbols), although ∆v has a high level of error at low flow rates where diffusion dominates. The proportionality (dash-dotted
line) gives a velocity distribution ∆v = 0.1〈v〉. For rheometric shear flow, we find that the extracted ∆v is proportional to the applied shear
rate, Fig. S4(b) (symbols), being independent of the imaging depth, h. Proportionality, ∆v = 2µm · γ̇ , implies an optical section of 1.6 µm,
using the relation between a uniform ∆v and the FWHM, see Sec. S1.

S5 Far-field dynamic microscopy
In Fig. S5 we show a comparison of the flow-DDM method presented in the main text, (blue) squares, alongside alternate analysis
schemes as a function of flow speed. Repeating the flow-DDM analysis but with an increased sector width (θ = 7.5°, open triangles)
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Fig. S5 Flow rate dependence of alternate diffusivity measurements in Poiseuille flow, averaged diffusion coefficient (〈D〉) as a function of flow speed,
〈v〉. Dotted line indicates 〈D〉= 1.51µm2/s measured at rest, Fig. 4(a). Symbols: filled (blue) squares, flow-DDM with sector width θ = 3° and q range
3.0 µm−1 to 3.5 µm−1, as in Fig. 6(a); open (black) triangles, flow-DDM with increased sector width, θ = 7.5°; and, open (grey) circles, far-field dynamic
microscopy with θ = 3° and q =2.0 µm−1 to 2.5 µm−1.

shows the influence of flow at lower speeds. This arises from the larger residual velocity components included in the broader sector, with
a clear increase in the measured 〈D〉 at 〈v〉= 1000µms−1.

An alternate digital Fourier microscopy method for samples being deformed has been suggested by Aime and Cipelletti1. This
“far-field” dynamic microscopy (FFDM) uses a higher-order correlator that in ideal conditions measures the square of the magnitude
of the ISF, | f |2. Being dependent only on the magnitude of the ISF (in place of the real part alone, as with DDM), such a correlator
is independent of the phase and thus any global translation of the sample. Applying FFDM should conceptually be equal to the drift
correction applied in Sec. 2. However, we find in quiescent samples that FFDM is inconsistent with DDM, with a lower diffusivity
measured for both imaging methods, Fig. S6(a) and (b). In flowing samples, the diffusivity measured from a perpendicular sector (θ = 3°)
at the highest accessible q range (2.0 µm−1 to 2.5 µm−1) increases at lower flow rates than flow-DDM (Fig. S5), instead the increase is
comparable to that in anisotropic-DDM, Fig. 6. Together, these indicate that for the microscopy methods used (and also likely movies
taken of industrially relevant samples) FFDM is impacted by cross-terms in the higher-order correlator. When considering such cross
terms between signal and noise the correlator is no longer invariant to a global translation, with a mix of | f |2 and f terms that is not
amenable to a simple interpretation. This link between signal and noise is seen in A(q) and B(q), Fig. S6(c) and (d), cf. light (grey) and
dark (blue) symbols.
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Fig. S6 Comparison of Fourier Digital Microscopy methods for diffusion measurements of quiescent samples. (a) Phase-contrast microscopy of a
dilute suspension of 300 nm polystyrene particles as a function of wavevector, q. Symbols: filled dark (blue) squares, DDM; light (grey) open squares,
“far-field” correlator (FFDM). (b) Confocal microscopy of a dilute colloidal suspension, PMMA in density-matched CsCl solution (with Hanning window
applied). Symbols, D(q) for: filled (blue) circles, DDM; open (grey) circles, FFDM. (c) Signal [filled, A(q)] and noise [open, B(q)] for D measurements
in (a), symbols and colours as in (a). (d) A(q) and B(q) for measurements in (b), with colouring as in (c).

Notes and references
1 S. Aime and L. Cipelletti, Soft Matter, 2019, 15, 213–226.
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