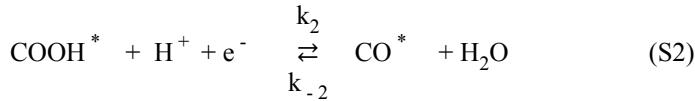
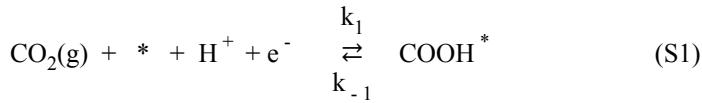


Electronic Supplementary Information

**Rational Design of Dual-Metal-Site Catalysts for Electroreduction of
Carbon Dioxide**

Gan Luo,[†] Yu Jing,[‡] Yafei Li^{†*}



[†]Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

[‡]College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

To whom correspondence should be addressed. Email: liyafei@njnu.edu.cn (YL)

Computational details of micro-kinetics simulations

To give an intuitive demonstration of the CRR activity of DMSCs, we further constructed a micro-kinetics model for the conversion of CO₂ to CO, of which the reaction process is summarized as:

where k_i (i = 1-3) is rate constant, and k_{-i} is rate constant of the reverse reaction. Based on steady-state approximation, the dynamical coverage rate of *_{DMSC}, COOH* and CO* can be written as:

$$\frac{\partial \theta_{*_{DMSC}}}{\partial t} = -k_1 \theta_{*_{DMSC}} P_{\text{CO}_2(\text{g})} + k_{-1} \theta_{\text{COOH}^*} + k_3 \theta_{\text{CO}^*} - k_{-3} \theta_{*_{DMSC}} P_{\text{CO}(\text{g})} \quad (\text{S4})$$

$$\frac{\partial \theta_{\text{COOH}^*}}{\partial t} = k_1 \theta_{*_{DMSC}} P_{\text{CO}_2(\text{g})} - k_{-1} \theta_{\text{COOH}^*} - k_2 \theta_{\text{COOH}^*} + k_{-2} \theta_{\text{CO}^*} \quad (\text{S5})$$

$$\frac{\partial \theta_{\text{CO}^*}}{\partial t} = k_2 \theta_{\text{COOH}^*} - k_{-2} \theta_{\text{CO}^*} - k_3 \theta_{\text{CO}^*} + k_{-3} \theta_{*_{DMSC}} P_{\text{CO}(\text{g})} \quad (\text{S6})$$

where θ is the coverage of the reaction intermediate, t is the time, and $P_{\text{CO}_2(\text{g})}$ and $P_{\text{CO}(\text{g})}$ are the pressure of CO₂(g) and CO(g), respectively. For the simulated kinetic volcano and polarization curves presented in the main text, we set $P_{\text{CO}_2(\text{g})} = P_{\text{CO}(\text{g})} = 1$ atm and 0.5 atm, respectively. Besides, these coverages on a DMSC should be satisfied the following condition :

$$1 = \theta_{*_{DMSC}} + \theta_{\text{CO}^*} + \theta_{\text{COOH}^*} \quad (\text{S7})$$

On the basis of the transition state theory, for electrochemical step, the rate constant

k_i can be written as¹

$$k_i = A \exp\left(-\frac{E_{a,i}}{k_B T}\right) \exp\left(-\frac{\beta e(U - U_i^0)}{k_B T}\right) \quad (S8)$$

where A is a pre-exponential factor, $E_{a,i}$ is the activation energy for the proton transfer, U_i is the reversible potential of step i deduced by $U_i = -\Delta G_i/e$, β is the symmetric factor taken as 0.5. k_B is the Boltzmann constant, and h is Planck constant. It is assumed that the $E_{a,i}$ to be material-independent in the electrochemical process, such

that an effective pre-exponential factor, $A' = A \exp\left(-\frac{E_{a,i}}{k_B T}\right)$, can be applied to simplify the expression of rate constant:

$$k_i = A' \exp\left(-\frac{\beta e(U - U_i^0)}{k_B T}\right) \quad (S9)$$

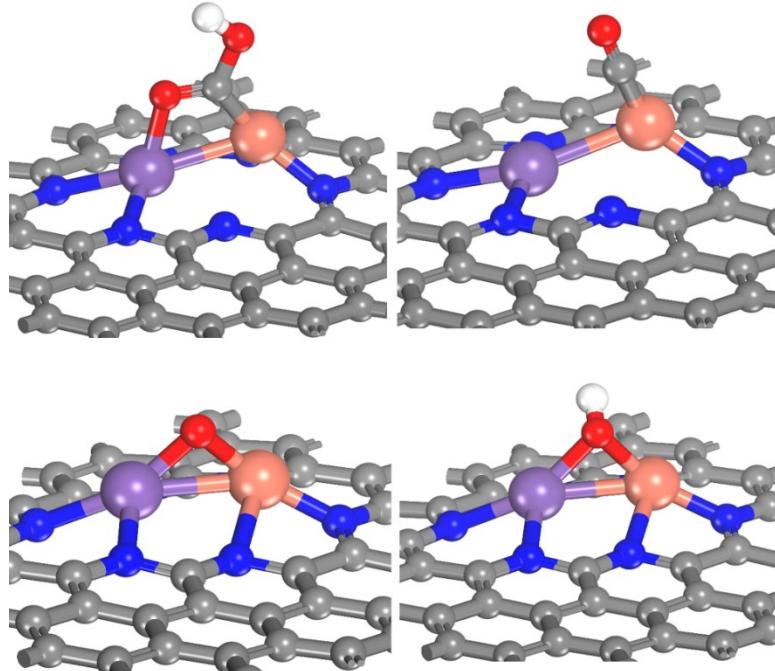
$A' = 3.6 \times 10^4 \text{ s}^{-1}$ is adopted here to reproduce the experimental polarization curve on Au surface with $\sim 5\%$ steps in the sample.² In addition, the rate constant for chemical step of CO* desorption is expressed as,

$$k_3 = \nu \exp\left(-\frac{E_{co}}{k_B T}\right) \quad (S10)$$

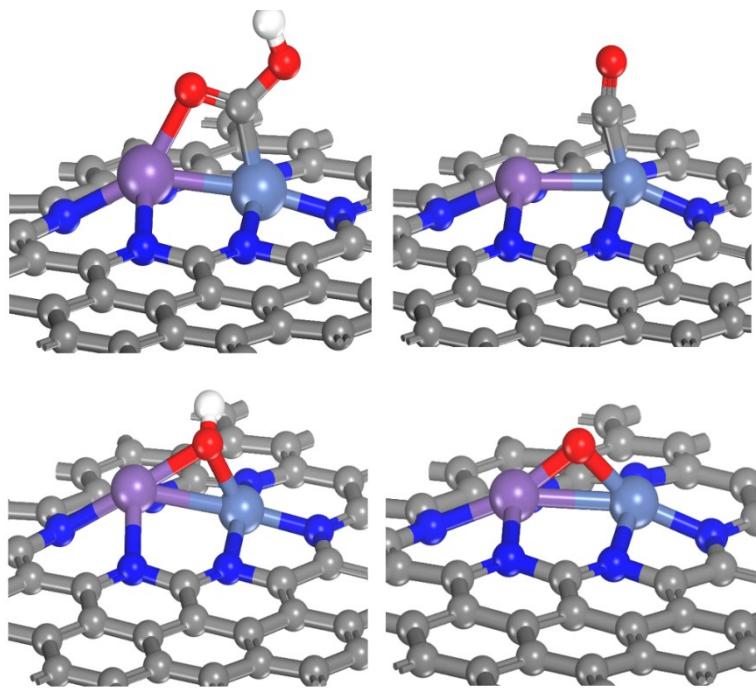
where E_{CO} is the binding energy of CO* and $\nu = 10^{13} \text{ s}^{-1}$ is a conventional pre-factor for CO desorption.

The equilibrium constant (K_i), which depends on the electrode potential (U), is calculated by,

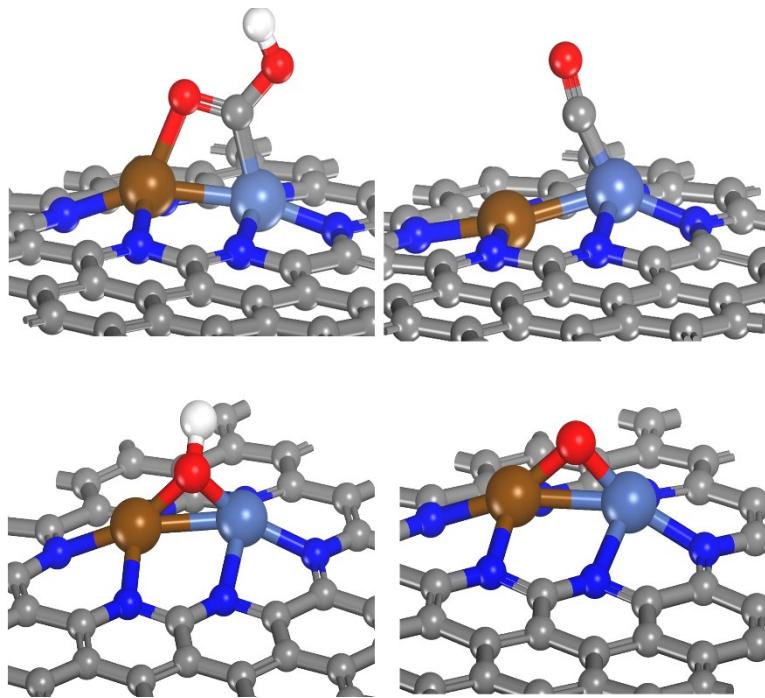
$$K_i = \exp\left(-\frac{eU + \Delta G_i}{k_B T}\right) \quad (S11)$$


For all reaction steps, the k_i can be calculated from the its rate constant and equilibrium constant; that is,

$$k_{-i} = \frac{k_i}{K_i} \quad (S12)$$


These rate equations are solved at steady state, and then we can get the turn over frequency (TOF).

Finally, the current density (j) can be calculated by:


$$j = e\rho T OF_{e^-} \quad (S13)$$

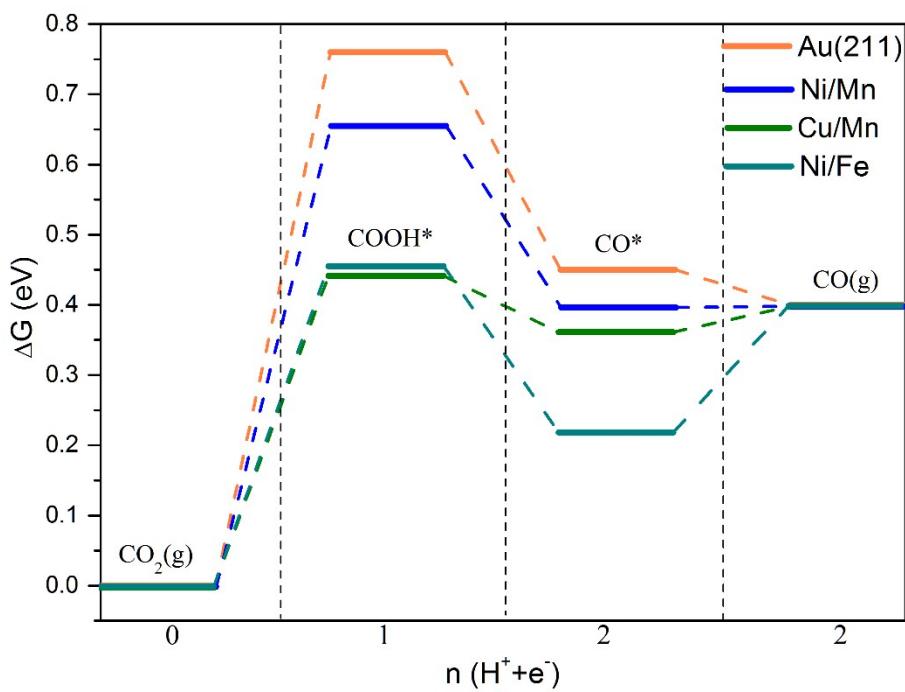

Fig. S1 The most stable configurations of key intermediates adsorption on Cu/Mn DMSC in the process of CO₂ electroreduction. Grey, dark blue, orange and purple balls represent C, N, Cu and Mn atoms, respectively

Fig. S2 The most stable configurations of key intermediates adsorption on Ni/Mn DMSC in the process of CO₂ electroreduction. Grey, dark blue, light blue and purple balls represent C, N, Ni and Mn atoms, respectively

Fig. S3 The most stable configurations of key intermediates adsorption on Ni/Fe DMSC in the process of CO₂ electroreduction. Grey, dark blue, light blue and brown balls represent C, N, Ni and Fe atoms, respectively

Fig. S4 The free energy diagrams of CO_2 reduction on Cu/Mn, Ni/Mn and Ni/Fe DMSCs at 0 V vs RHE. The free energy diagram of Au(211) was also plotted for comparison.

Table S1. The calculated dissolution potentials (U_{dis}) of transition metal atoms (M_1 or M_2) in $M_1/M_2\text{-N}_6\text{/C}$ DMSCs for the dissolution reaction of $M_1(M_2) + n\text{H}^+ \leftrightarrow M_1(M_2)^{n+} + n/2\text{H}_2$. U_{dis} is defined as $U_{\text{dis}} = U_{M1}^0 + [E_{M1, \text{bulk}} - (E_{M1/M2\text{-N}_6\text{-C}} - E_{M2\text{-N}_6\text{-C}})]$ or $U_{\text{dis}} = U_{M2}^0 + [E_{M2, \text{bulk}} - (E_{M1/M2\text{-N}_6\text{-C}} - E_{M1\text{-N}_6\text{-C}})]$. U_{M1}^0 and U_{M2}^0 are the standard dissolution potentials of M_1 and M_2 in the bulk phase.³

M	U_M^0 (V)	U_{dis} (V)
Ni@Ni/Fe DMSC	-0.26	0.43
Fe@Ni/Fe DMSC	-0.45	0.24
Cu@Cu/Mn DMSC	0.34	0.72
Mn@Cu/Mn DMSC	-1.18	-0.36
Ni@Ni/Mn DMSC	-0.26	0.37
Mn@Ni/Mn DMSC	-1.18	-0.13

Table S2. The calculated formation energies (E_f) of heteronuclear Cu/Mn, Ni/Mn and Ni/Fe DMSCs and compared to those of homonuclear Cu/Cu, Mn/Mn, Fe/Fe/ and Ni/Ni DMSCs. E_f is defined as $E_f = E_{M1/M2-N6-C} - \mu_{M1} - \mu_{M2} - n\mu_C - m\mu_N$, where $E_{M1/M2-N6-C}$ is the total energy of DMSC, μ_{M1} and μ_{M2} are the chemical potentials of M_1 , M_2 , carbon and N atoms, respectively. n and m are the number of C and N atoms in the supercell, respectively. The total energies of bulk metals, graphene and nitrogen molecule were computed to obtain the chemical potentials for corresponding elements.

DMSC	Cu/Mn	Ni/Mn	Fe/Ni	Cu/Cu	Mn/Mn	Ni/Ni	Fe/Fe
E_f (eV/atom)	0.093	0.102	0.120	0.104	0.118	0.121	0.162

References

¹S. Vilekar, I. Fishtik, R. Datta, *J. Electrochem. Soc.* 2010, **157**, B1040-B1050.

²M. P. Andersson, F. Abild-Pedersen, I. N. Remediakis, T. Bligaard, G. Jones, J. Engbaek, O. Lytken, S. Horch, J. H. Nielsen, J. Sehested, *J. Catal.* 2008, **255**, 6-19.

³J. Greeley, J. K. Nørskov, *Electrochimica Acta*, 2007, **52**, 5829-5836