Electronic Supplementary Information

FeN_x and γ -Fe₂O₃ co-functionalized hollow graphitic carbon nanofibers for efficient oxygen reduction in an alkaline medium

Qiang Yu, ^a Sitian Lian, ^a Jiantao Li, ^a Ruohan Yu, ^{a, b} Shibo Xi, ^c Jinsong Wu, ^b Dongyuan Zhao, ^a Liqiang Mai ^a and Liang Zhou *^a

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China

^b Nanostructure Research Centre, Wuhan University of Technologyy, Wuhan 430070, P. R. China

^c Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), Singapore 627833, Singapore

E-mail: liangzhou@whut.edu.cn

Fig. S1 FTIR spectrum of RNFs.

Fig. S2 High magnification SEM image of RNFs.

Fig. S3 Low magnification TEM image of FeN_x/Fe₂O₃-CNFs.

Fig. S4 SEM (a), TEM (b), and HRTEM (c) images of FeN_x/Fe₃C-CNFs.

Fig. S5 TEM (a, b) images of N-doped CNFs.

Fig. S6 TEM image of FeN_x/Fe₂O₃-CNFs-700.

Fig. S7 TEM image of FeN_x/Fe₂O₃-CNFs-900.

Fig. S8 Raman spectra of FeN_x/Fe₂O₃-CNFs and FeN_x/Fe₃C-CNFs.

Fig. S9 N_2 adsorption/desorption isotherms of $FeN_x/Fe_2O_3\text{-}CNFs$ and $FeN_x/Fe_3C\text{-}CNFs.$

Fig. S10 XPS survey spectrum of FeN_x/Fe₂O₃-CNFs.

Fig. S11 TG and DSC curves of FeN_x/Fe₂O₃-CNFs.

Fig. S12 CV curves of CNFs, FeN_x/Fe_2O_3 -CNFs, and FeN_x/Fe_3C -CNFs with a scan rate of 5 mV s⁻¹.

Fig. S13 CV (a) and LSV (b) curves of FeN_x/Fe_2O_3 -CNFs catalysts prepared at different activation temperatures; LSV curves (c) and the corresponding K-L plots (d) of FeN_x/Fe_2O_3 -CNFs-700; LSV curves (e) and the corresponding K-L plots (f) of FeN_x/Fe_2O_3 -CNFs-900.

Fig. S14 Electron transfer number (a) and H_2O_2 yields (b) of FeN_x/Fe_2O_3 -CNFs and FeN_x/Fe_3C -CNFs at 0.2 - 0.7 V.

Fig. S15 LSV curves of FeN_x/Fe_2O_3 -CNFs (a) and Pt/C (b) with and without CH₃OH.

Fig. S16 Effect of SCN⁻ on the catalytic activity of FeN_x/Fe₂O₃-CNFs.

Sample	S _{BET} (m ² g ⁻¹)	S _{t-Plot Micro} (m ² g ⁻¹)	V _p (cm ³ g ⁻¹)	V _{t-Plot Micro} (cm ³ g ⁻¹)
FeN _x /Fe ₂ O ₃ -CNFs - 700	679	299	1.43	0.15
FeN _x /Fe ₂ O ₃ -CNFs - 800	712	308	1.15	0.16
FeN _x /Fe ₂ O ₃ -CNFs - 900	1093	160	2.36	0.07
FeN _x /Fe ₃ C-CNFs - 800	639	279	1.00	0.14
CNFs	408	308	0.34	0.15

Table S1. Textural properties of the samples.

Fe species	CS (mm s ⁻¹)	D (mm s ⁻¹)	А	W+ (mm s ⁻¹)	Content (%)
Doublet 1	0.86	2.01	15900	0.37	15.7%
Doublet 2	0.35	0.58	39400	0.35	39%
Sextet 1	0.31	0.04	28000	0.27	27.7
Sextet 2	1.05	-0.06	17700	0.60	17.5%

Table S2. Summary of the Mössbauer site parameters to different iron species in FeN_x/Fe_2O_3 -CNFs catalysts.

CS: Center shift; D: Quadrupole splitting; A: Area; W+: Absorption line width

Table S3. Comparison of the ORR performance of non-precious metal catalyst in 0.1 M KOH at 1600 rpm.

S la	Onset	Half-wave	J _{Limit}	J _{Kinetic}	Deferrer
Sample	(V vs. RHE)	potential (V vs. RHE)	(mA cm ⁻²)	(mA cm ⁻²)	Reference
FeN _x /Fe ₂ O ₃ -CNFs	0.95	0.81	~6	0.50	This work
p-Fe-N-CNFs	0.91	0.82	5.05	/	1
PFA-Fe5-900-ALP	0.92	0.85	5.4	/	2
N-doped carbon tube	0.89	0.76	~4.9	~0.26	3
Fe-N/C-800	0.98	0.81	4.81	~0.32	4
Fe-N-CNFs	0.93	0.81	5.12	/	5
Co-N-doped Graphitic carbon	0.92	0.82	5.3	~0.32	6
FeCo/N-doped	0.89	0.81	~6	~0.13	7
B-doped Fe– N_x centers-enriched porous carbons	0.97	0.84	5.5	~0.93	8
MOG(Fe)/urea/CN Ts-700	0.92	0.72	5.37	~0.11	9
a-Fe ₂ O ₃ /CNT	0.82	/	~4	/	10
Fe/N/S-PCNT	0.96	0.84	~5	~0.55	11
Graphene-like carbon nanosheets	0.86	0.77	4.8	/	12

1. B. C. Hu, Z. Y. Wu, S. Q. Chu, H. W. Zhu, H. W. Liang, J. Zhang and S. H. Yu, *Energy Environ. Sci.*, 2018, **11**, 2208-2215.

- L. C. Pardo Pérez, N. R. Sahraie, J. Melke, P. Elsässer, D. Teschner, X. Huang, R. Kraehnert, R. J. White, S. Enthaler, P. Strasser, and A. Fischer, *Adv. Funct. Mater.*, 2018, 1707551.
- W. Wei, H. T. Ge, L. S. Huang, M. Kuang, A. M. Al-Enizi, L. J. Zhang and G. F. Zheng, J. Mater. Chem. A, 2017, 5, 13634-13638.
- 4. W. H. Niu, L. G. Li, X. J. Liu, N. Wang, J. Liu, W.J. Zhou, Z. H. Tang, and S. W. Chen, J. Am. Chem. Soc., 2015, 137, 5555.
- 5. Z. Y. Wu, X. X. Xu, B. C. Hu, H. W. Liang, Y. Lin, Angew. Chem. Int. Ed., 2015, 54, 8179.
- S. H. Liu, Z. Y. Wang, S. Zhou, F. J. Yu, M. Z. Yu, C. Y. Chiang, W. Z. Zhou, J. J. Zhao, and J. S. Qiu, *Adv. Mater.*, 2017, 1700874.
- G. T. Fu, Y. Liu, Y. F. Chen, Y. W. Tang, J. B. Goodenough and J. M. Lee, *Nanoscale*, 2018, 10, 19937-19944.
- K. Yuan, S. Sfaelou, M. Qiu, D. Lützenkirchen-Hecht, X. D. Zhuang, Y. W. Chen, C. Yuan, X. L. Feng, and U. Scher, *ACS Energy Lett.*, 2018, 3, 252-260.
- H. Wang, X. C Cheng, F. X. Yin, B. H. Chen, T. Y. Fan, X. B. He, *Electrochim. Acta*, 2017, 232, 114–122.
- 10. M. Sun, Y. Z. Dong, G. Zhang, J. H. Qu and J. H. Li, J. Mater. Chem. A, 2014, 2, 13635.
- Z. Tan, H. X. Li, Q. X. Feng, L. L. Jiang, H. Y. Pan, Z. Y. Huang, Q. Zhou, H. H. Zhou, S. Ma, Y. F. Kuang, J. Mater. Chem. A, 2019, 7, 1607-1615.
- 12. C. Hu, Y. Zhou, R. Ma, Q. Liu and J. Wang, J. Power Sources, 2017, 345, 120-130.