Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.

## Electronic Supplementary Information

## Crystal Phase Tuning and Valence Engineering in Non-noble Catalyst for Outstanding Overall Water Splitting

Kailing Zhou,<sup>a</sup> Qianqian Zhang,<sup>a</sup> Jingbing Liu, <sup>a</sup> Hao Wang\*<sup>a</sup> and Yongzhe Zhang<sup>a</sup>

<sup>a</sup> College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China. E-mail: haowang@bjut.edu.cn



Figure S1. XRD patterns of as-synthesized  $Ni_xCo_{1-x}$  alloys with the different Ni contents.



**Figure S2.** The SEM image of samples (a1-2) Co, (b1-2)  $Ni_{0.13}Co_{0.87}$  and (c1-2)  $Ni_{0.19}Co_{0.81}$ , corresponding nanostructural model and the simple schematic diagram of crystal phase (a3-4, b3-4, c3-4).



**Figure S3.** The SEM image of samples (a1-2)  $Ni_{0.24}Co_{0.76}$ , (b1-2)  $Ni_{0.39}Co_{0.61}$  and (c1-2)  $Ni_{0.46}Co_{0.54}$ , corresponding nanostructural model and the simple schematic diagram of crystal phase (a3-4, b3-4, c3-4).



**Figure S4.** The SEM image of samples (a1-2) Ni<sub>0.63</sub>Co<sub>0.37</sub>, (b1-2) Ni<sub>0.80</sub>Co<sub>0.20</sub> and (c1-2) Ni, corresponding nanostructural model and the simple schematic diagram of crystal phase (a3-4, b3-4, c3-4).



Figure S5. Cyclic voltammograms obtained with Co,  $Ni_{0.13}Co_{0.87}$ ,  $Ni_{0.19}Co_{0.81}$ ,  $Ni_{0.24}Co_{0.76}$ ,  $Ni_{0.39}Co_{0.61}$ ,  $Ni_{0.46}Co_{0.54}$ ,  $Ni_{0.63}Co_{0.37}$ ,  $Ni_{0.80}Co_{0.20}$  and Ni alloy electrodes, respectively.



Figure S6. The Double-layer capacitance  $(C_{dl})$  plotted as a function of molar ratio between Ni and Co in alloy electrodes.



Figure S7. The charge transfer resistance  $(R_{ct})$  plotted as a function of the molar ratio

between Ni and Co in alloy electrodes.



Figure S8. The SEM image of  $Ni_{0.46}Co_{0.54}$  alloy electrode at the initial stage of electrochemical growth.



Figure S9. (a) The XPS survey spectra and the high-resolution Ni 2p (b), Co 2p (c) and O 1s (d) XPS spectra of  $Ni_{0.46}Co_{0.54}$ ,  $Ni_{0.46}Co_{0.54}$ -300,  $Ni_{0.46}Co_{0.54}$ -400 and  $Ni_{0.46}Co_{0.54}$ -500.



**Figure S10.** The SEM images with different magnifications of  $Ni_{0.46}Co_{0.54}$  alloy after (a-c) 300 °C and (d-f) 500 °C annealing treatment in an air atmosphere.



Figure S11. Cyclic voltammograms obtained with (a)  $Ni_{0.46}Co_{0.54}$ , (b)  $Ni_{0.46}Co_{0.54}$ -300, (c)  $Ni_{0.46}Co_{0.54}$ -400 and (d)  $Ni_{0.46}Co_{0.54}$ -500 in the capacitance potential range (-1.08 V ~ 1.18 V versus RHE) at scan rates of 2, 5, 10, 20, 50 and 100, respectively.



**Figure S12.** (a) Charging current density differences plotted against scan rate for  $Ni_{0.46}Co_{0.54}$ -based electrode. The linear slope is equivalent to the double-layer capacitance  $C_{dl}$ , representing the electrochemical surface area. (b) The double-layer capacitance  $C_{dl}$  plotted against annealing temperature.



Figure S13. Nyquist plots of  $Ni_{0.46}Co_{0.54}$ -based electrode for HER measured at -183 mV vs RHE.



Figure S14. Cyclic voltammetry (CV) curves of  $Ni_{0.46}Co_{0.54}$ -400 electrode before and after the HER durability test with 3000 cycles.



Figure S15. Nyquist plots of  $Ni_{0.46}Co_{0.54}$ -based electrodes measured at 1.517 V vs RHE for OER.



**Figure S16.** Cyclic voltammetry (CV) curves of  $Ni_{0.46}Co_{0.54}$ -400 electrode before and after the OER durability test with 3000 cycles.



Figure S17. XPS spectra evolution of Co 2p in initial  $CoNiO_2/Ni_{0.46}Co_{0.54}$  and after OER electrocatalysis with 3000 cycles. No apparent change can be found, suggesting the stable nature of  $CoNiO_2/Ni_{0.46}Co_{0.54}$  for OER.



Figure S18. The performance of Pt/C@RuO<sub>2</sub> for overall water splitting

**Table S1.** Comparison of HER performances of  $Ni_{0.46}Co_{0.54}$ -400 catalyst with recently reported catalysts in alkaline electrolyte.

| Electrocatalysts                                      | Overpotential<br>at 10 mA cm <sup>-2</sup><br>(mV) | Tafel slop<br>(mV dec <sup>-1</sup> ) | Loading mass              | Reference                                                              |
|-------------------------------------------------------|----------------------------------------------------|---------------------------------------|---------------------------|------------------------------------------------------------------------|
| Ni <sub>0.46</sub> Co <sub>0.54</sub> -400            | 58                                                 | 36                                    | 0.46 mg cm <sup>-2</sup>  | This work                                                              |
| NiCo <sub>2</sub> S <sub>4</sub><br>nanowire          | 210                                                | 58.9                                  | -                         | <i>Adv. Funct.</i><br><i>Mater.</i> <b>2016</b> , 26,<br>4661.         |
| Ni <sub>0.33</sub> Co <sub>0.67</sub> Se <sub>2</sub> | 106                                                | 60                                    | -                         | <i>Adv. Energy</i><br><i>Mater.</i><br><b>2017</b> , 7,<br>1602089.    |
| CoMoP@C                                               | 81                                                 | 55                                    | 0.35 mg cm <sup>-2</sup>  | <i>Energy Environ.</i><br><i>Sci.,</i><br><b>2017</b> , 10, 788.       |
| NiO/Ni-CNT                                            | 80                                                 | 51                                    | 8.00 mg cm <sup>-2</sup>  | <i>Nat. Commun.</i> <b>2014</b> , 5, 4695.                             |
| N-NiCo <sub>2</sub> S <sub>4</sub><br>nanowire        | 41                                                 | 37                                    | -                         | <i>Nat. Commun.</i> 2018, 9(1): 1425.                                  |
| Pt <sub>13</sub> Cu <sub>73</sub> Ni <sub>14</sub>    | 148                                                | 54                                    | -                         | <i>ACS Appl.</i><br><i>Mater. Interfaces</i><br><b>2016</b> , 8, 3464. |
| MoO <sub>x</sub> /Ni <sub>3</sub> S <sub>2</sub> /NF  | 106                                                | 90                                    | 12.00 mg cm <sup>-2</sup> | Adv. Funct.<br>Mater. <b>2016</b> , 26,<br>4839.                       |
| NF–Ni <sub>3</sub> Se <sub>2</sub> /Ni                | 203                                                | 79                                    | 8.87 mg cm <sup>-2</sup>  | Nano Energy <b>2016</b> , 24, 103.                                     |
| Mn-CoP/Ti                                             | 76                                                 | 52                                    | 5.61 mg cm <sup>-2</sup>  | ACS Catal.<br>2016, 7, 98.                                             |
| CoS <sub>2</sub>                                      | 98                                                 | 57                                    | 0.34 mg cm <sup>-2</sup>  | <i>ACS Energy Lett.</i> <b>2018</b> , 3, 779.                          |
| N,Mn-<br>MoS <sub>2</sub> /NF                         | 66                                                 | 50                                    | 4.00 mg cm <sup>-2</sup>  | ACS Catal.<br>2018, 8, 7585.                                           |
| Ni <sub>0.89</sub> Co <sub>0.11</sub> Se <sub>2</sub> | 85                                                 | 52                                    | 2.62 mg cm <sup>-2</sup>  | <i>Adv. Mater.</i><br><b>2017</b> , 29,<br>1606521                     |
| NiCo <sub>2</sub> P <sub>x</sub> /CC                  | 58                                                 | 34                                    | 5.90 mg cm <sup>-2</sup>  | <i>Adv. Mater.</i><br><b>2017</b> , 29,<br>1605502.                    |
| Ce-doped<br>CoP/Ti                                    | 92                                                 | 64                                    | -                         | <i>Nano Energy</i><br><b>2017</b> , 38, 290.                           |

**Table S2.** Comparison of OER performances of  $Ni_{0.46}Co_{0.54}$ -400 catalyst with recently reported catalysts in alkaline electrolyte.

| Electrocatalysts                                  | Overpotential<br>at 10 mA cm <sup>-2</sup><br>(mV) | Tafel slop<br>(mV dec <sup>-1</sup> ) | Loading mass             | Reference                                                |
|---------------------------------------------------|----------------------------------------------------|---------------------------------------|--------------------------|----------------------------------------------------------|
| Ni <sub>0.46</sub> Co <sub>0.54</sub> -400        | 195                                                | 30                                    | 0.46 mg cm <sup>-2</sup> | This work                                                |
| NiFe LDH                                          | 244                                                | 32                                    | -                        | <i>Nat. Commun.</i> <b>2016,</b> 7, 12324.               |
| Gelled FeCoW                                      | 191                                                | 37                                    | 0.21 mg cm <sup>-2</sup> | <i>Science</i> <b>2016</b> , 352, 333.                   |
| EG/Co <sub>0.85</sub> Se/NiFe<br>LDH              | 203                                                | 57                                    | 4.00 mg cm <sup>-2</sup> | Energy Environ. Sci.<br><b>2016</b> , 9, 478             |
| NiCeO <sub>x</sub> –Au                            | 270                                                | -                                     | -                        | <i>Nat. Energy</i> <b>2016</b> , 1, 16053.               |
| NiCo <sub>2</sub> O <sub>4</sub>                  | 290                                                | -                                     | 1.00 mg cm <sup>-2</sup> | Angew. Chem. Int. Ed.<br><b>2016</b> ,55, 6290           |
| CoFePO                                            | 275                                                | 52                                    | 2.18 mg cm <sup>-2</sup> | <i>ACS Nano</i><br><b>2016</b> , 10, 8738                |
| NiFe-LDH/ NiCo <sub>2</sub> O <sub>4</sub><br>/NF | 290                                                | 53                                    | 4.90 mg cm <sup>-2</sup> | ACS Appl. Mater.<br>Interfaces,<br><b>2017</b> , 9, 1488 |
| Co-MoS <sub>2</sub>                               | 260                                                | 85                                    | 2.00 mg cm <sup>-2</sup> | <i>Adv. Mater.</i><br><b>2018</b> , 1801450              |
| FeCoNi-LTH                                        | 302                                                | 72                                    | -                        | ACS Appl. Mater.<br>Interfaces<br><b>2017</b> , 9, 36917 |
| Ni <sub>1.5</sub> Fe <sub>0.5</sub> P/CF          | 264                                                | 55                                    | 1.38 mg cm <sup>-2</sup> | Nano Energy<br><b>2017</b> , 34, 472                     |
| Ni <sub>3</sub> FeN-NPs                           | 280                                                | 46                                    | 0.20 mg cm <sup>-2</sup> | <i>Adv. Energy Mater.</i><br><b>2016</b> , 6, 1502585    |
| NiCoFe@NiCoFeO<br>NTAs/CFC                        | 201                                                | 39                                    | -                        | J. Am. Chem. Soc.<br><b>2019</b> , 20, 8136.             |
| NiCo/pNGr                                         | 260                                                | 87                                    | 1.00 mg cm <sup>-2</sup> | <i>Adv. Mater. Interfaces</i> <b>2016</b> , 3, 1600532.  |
| CoFe LDHs                                         | 300                                                | 83                                    | 0.20 mg cm <sup>-2</sup> | <i>ChemPlusChem</i> <b>2017</b> , 82, 483.               |

**Table S3.** Comparison of overall water splitting performances of  $Ni_{0.46}Co_{0.54}$ -400 catalyst with recently reported catalysts in alkaline electrolyte.

| Electrocatalysts                                              | Cell voltage<br>at 10 mA cm <sup>-2</sup><br>(V) | 1.65 V mA | Loading mass             | Reference                                                         |
|---------------------------------------------------------------|--------------------------------------------------|-----------|--------------------------|-------------------------------------------------------------------|
| Ni <sub>0.46</sub> Co <sub>0.54</sub> -400                    | 1.51                                             | 234       | 0.46 mg cm <sup>-2</sup> | This work                                                         |
| hierarchical<br>Ni-Co-P HNBs                                  | 1.62                                             | 20        | 2.00 mg cm <sup>-2</sup> | Energy Environ.<br>Sci. <b>2018</b> , 11, 872.                    |
| NiFeO <sub>x</sub>                                            | 1.51                                             | 48        | 1.60 mg cm <sup>-2</sup> | <i>Nat. Commun.</i> <b>2015</b> , 6, 7261                         |
| Co-Mn carbonate<br>hydroxide                                  | 1.68                                             | 12        | 5.60 mg cm <sup>-2</sup> | J. Am. Chem. Soc.<br><b>2017</b> , 139, 8320.                     |
| Cu@CoFe LDH                                                   | 1.62                                             | 15        | 1.80 mg cm <sup>-2</sup> | Nano Energy<br><b>2017</b> , 41, 327.                             |
| MoS <sub>2</sub> /NiS <sub>2</sub> nanosheets                 | 1.59                                             | 27        | 1.10 mg cm <sup>-2</sup> | <i>Adv. Sci.</i><br><b>2019</b> , 6, 1900246.                     |
| FeCoNi-1T' MoS <sub>2</sub>                                   | 1.42                                             | 68        | -                        | <i>Nat. Commun.</i> <b>2018</b> , 9, 2452.                        |
| CoFeZr oxides /NF                                             | 1.63                                             | 18        | -                        | <i>Adv. Mater.</i> <b>2019</b> , 31, 1901439                      |
| Ni <sub>0.51</sub> Fe <sub>0.49</sub> P film                  | 1.57                                             | 85        | -                        | <i>Adv. Funct. Mater.</i> <b>2016</b> , 26, 7644.                 |
| NiFe LDH/Cu NW                                                | 1.54                                             | 67        | -                        | Energy Environ.<br>Sci. 2017, 10, 1820.                           |
| FeP/Ni <sub>2</sub> P                                         | 1.42                                             | 210       | 8.00 mg cm <sup>-2</sup> | Nat. Commun.<br><b>2018</b> , 9, 2551.                            |
| MoS <sub>2</sub> /Ni <sub>3</sub> S <sub>2</sub>              | 1.56                                             | 80        | 9.70 mg cm <sup>-2</sup> | Angew. Chem. Int.<br>Ed. <b>2016</b> , 55, 6702.                  |
| MoS <sub>2</sub> /NiFe-LDH                                    | 1.57                                             | 42        | 0.21 mg cm <sup>-2</sup> | <i>Nano Lett.</i> <b>2019</b> , 19, 4518.                         |
| Ni <sub>3</sub> N-VN/NF/Ni <sub>2</sub> P-VP <sub>2</sub> /NF | 1.51                                             | 30        | -                        | <i>Adv. Mater.</i> <b>2019</b> , 31, 1901174                      |
| Ni QD@NC@rGO                                                  | 1.56                                             | 38        | 1.00 mg cm <sup>-2</sup> | <i>Appl. Catal. B:</i><br><i>Environ.</i> <b>2019</b> , 250, 213. |
| Co(OH)2@NCNTs@N<br>F                                          | 1.72                                             | -         | 0.72 mg cm <sup>-2</sup> | Nano Energy<br><b>2018</b> , 47, 96                               |
| CoP/GO-400                                                    | 1.70                                             | -         | 0.28 mg cm <sup>-2</sup> | <i>Chem. Sci.</i><br><b>2016</b> , 7, 1690                        |

| NiS/Ni foam | 1.64 | - | 0.28 mg cm <sup>-2</sup> | ACS Catal.<br>2018, 8, 2236                 |
|-------------|------|---|--------------------------|---------------------------------------------|
| NiCo-LDH/NF | 1.66 | - | 1.00 mg cm <sup>-2</sup> | <i>Dalton Trans.</i> <b>2017</b> , 46, 8372 |