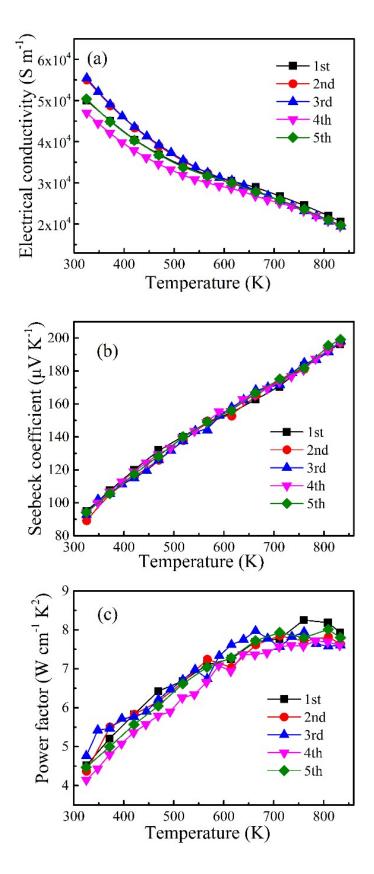
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Suppressing the Dynamic Precipitation and Lowering the Thermal Conductivity for Stable and High Thermoelectric Performance in $BaCu_2Te_2$ Based Materials

Kai Guo, †a Jianwei Lin, †a Yang Li, a Yifan Zhu, b, c Xin Li, b Xinxin Yang, a Juanjuan Xing, a Jiong Yang, *b Jun Luo *a, b and Jing-Tai Zhao d, e

^a School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China

^b Materials Genome Institute, Shanghai University, 99 Shangda Road, Shanghai 200444, China


^c State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, 1295 Dingxi Road, Shanghai 200444, China

^d School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China

^e Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China

[†] These authors contributed equally to this work.

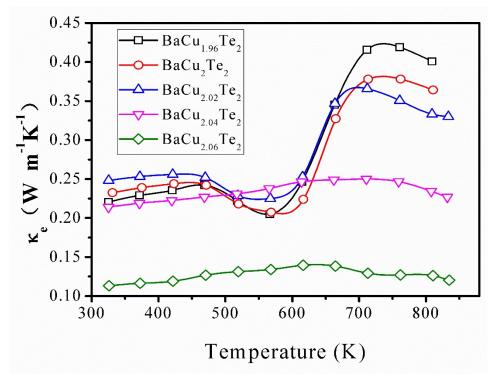

^{*} Corresponding author. E-mail: jiongy@t.shu.edu.cn (J. Yang); junluo@shu.edu.cn (J. Luo)

Figure S1. The repeated measurements of electrical conductivity (a), Seebeck coefficient (b) and power factor (c) for the high-performance $BaCu_{2.04}Te_2$ sample, indicating a good thermal stability.

Figure S2. The selected area for EDS mapping.

Figure S3. The temperature dependences of the electronic thermal conductivities for $BaCu_{2+x}Te_2$ samples (x = -0.04, 0, 0.02, 0.04, 0.06 and 0.08).