Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Organic polymeric filler-amorphized poly(ethylene oxide) electrolyte enables all-solidstate lithium-metal batteries operating at 35 °C

Gulian Wang,^{a†} Xingyu Zhu,^{a†} Arif Rashid,^a Zhongli Hu,^a Pengfei Sun,^a Qiaobao Zhang^{*b} and Li Zhang^{*a}

- ^{a.} College of Energy, Soochow Institute for Energy and Materials InnovationS, Soochow University, Suzhou
- 215006, China. E-mail: zhangli81@suda.edu.cn
- ^{b.} Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen
- 361005, Fujian, China. E-mail: zhangqiaobao@xmu.edu.cn
- ^{*†*}*These authors contributed equally to this work.*

Supplementary Figures

Figure S1. Plots of log ($\sigma \cdot T^{1/2}$) vs. 1000/($T - T_0$) of the pristine PEO and PEO-HPMA SPEs with different HPMA dosages.

As displayed in Figure 3a, the plots of log σ versus T^{-1} for the pristine PEO and PEO-HPMA SPEs with different HPMA dosages present a non-liner relationship, which can be further described by the Vogel-Tamman-Fulcher (VTF) empirical equation (Ref: *Angew. Chem. Int. Ed.*, 2018, **57**, 10168-10172)

$$\sigma = \sigma_0 T^{-1/2} \exp(-\frac{E_a}{T - T_0})$$

Where σ_0 is the pre-exponential factor, E_a is the activation energy, T_0 is a parameter correlated to the glass transition temperature T_g , and R is the ideal gas constant. Herein, we use the T_g values obtained from the DSC tests (Figure 2e) to approximate the T_0 . By linearly fitting the log $(\sigma \cdot T^{1/2})$ vs. $1000/(T - T_0)$ relationship, the E_a of the PEO-1%HPMA SPE is calculated to be 0.53 eV, while the pristine PEO shows a much higher value of 1.01 eV. Generally, a lower E_a represents Li⁺ ions that requires less energy when moving in the electrolyte, *i.e.*, a higher ionic conductivity.

Figure S2. Charge/discharge profiles of the Li/PEO-1% HPMA/LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂ cell after various cycles at 0.1 C.

Journal Name

Figure S3. The chronoamperometry profile of a symmetrical Li/PEO-1% HPMA/Li cell under a polarization voltage of 10 mV. The inset shows the Nyquist profiles of the cell before and after the chronoamperometry test.

Figure S4. The chronoamperometry profile of a symmetrical Li/PEO /Li cell under a polarization voltage of 10 mV. The inset shows the Nyquist profiles of the cell before and after the chronoamperometry test.

```
4 | J. Name., 2012, 00, 1-3
```


Figure S5. Voltage versus time profile of the symmetrical Li/PEO-1% HPMA/Li cell during the repeated Li plating/stripping process at current densities of 0.2 mA cm⁻².

Figure S6. Voltage versus time profile of the symmetrical Li/PEO-1% HPMA/Li cell during the repeated Li plating/stripping process at current densities of 0.5 mA cm⁻².

Figure S7. Long-term cycling stability of the Li/PEO-HPMA/LFP cell in a potential range of 2.6-4.3 V at a current rate of 0.2 C and corresponding Coulombic efficiency vs. cycle number profile.

Figure S8. Long-term cycling stability of the Li/PEO-HPMA/LFP cell in a potential range of 2.6-4.3 V at a current rate of 0.5 C and corresponding Coulombic efficiency vs. cycle number profile.

COMMUNICATION

Figure S9. Nyquist plot of the quasi-solid-state Li-S battery after cycling for 1 and 10 cycles, respectively.

Figure S10. Rate capability of Li/PEO-HPMA-TEGDME/S cells at various current rates from 0.1 to 1 C (1C= 1675 mA g⁻¹).

COMMUNICATION

Table S1. Comparison of the ionic conductivity, electrochemical performance and operating temperaturebetween our PEO-HPMA SPE and the state-of-the-art PEO-based SPEs in the literatures.

PEO-based SPEs	Ionic conductivity	Active	Electrochemical performance and operating	Defe
	(S cm ⁻¹)	materials	temperature	Reis
PEO/LiTFSI+ HPMA	1.13*10 ⁻⁴ at 35 °C 2.16*10 ⁻⁴ at 45 °C	LiFePO ₄	160.3, 150.5 and 143.8 mAh·g ⁻¹ at 0.1, 0.5 and 1 C, 35 °C 144.1 mAh·g ⁻¹ after 185 cycles at 0.2 C, 35 °C	This work
PEO/LiTFSI+	1.8*10 ⁻⁵ at 25 °C	LiFePO ₄	135.6 mAh·g⁻¹ at 0.1C, 80 °C	[1]
BaTiO ₃ nanospheres	1.6*10 ⁻³ at 80 °C		97.5% capacity retention after 50 cycles	[+]
LiClO₄/PEO+ LLTO nanofiber	4.01*10 ⁻⁴ at 60 °C	LiFePO ₄	140 mAh·g ⁻¹ at 1C, 60 °C 92.4% capacity retention after 100 cycles	[2]
PEO/LiTFSI+ LLZO NWs	2.39*10 ⁻⁴ at 25 °C 1.15*10 ⁻³ at 60 °C	LiFePO ₄	158.7 mAh·g ⁻¹ after 80 cycles at 0.1 C, 45 °C 158.8 mAh·g ⁻¹ after 70 cycles at 0.5 C, 60 °C	[3]
PEO/LiTFSI + nanoporous SSZ-13	1.91*10 ⁻³ at 60 °C 4.43*10 ⁻⁵ at 20 °C	LiFePO ₄	130 mAh·g⁻¹ after 100 cycles at 1C, 58 °C	[4]
PEO/LiTFSI + g-C ₃ N ₄	1.7*10 ⁻⁵ at 30 °C	LiFePO ₄	155 mAh·g ⁻¹ after 100 cycles at 0.2 C, 60 °C	[5]
PEO/LiTFSI + LAGP		LiFePO ₄	~120 mAh·g ⁻¹ at 1C and 70% retention after 500 cycles, 30 ℃	[6]
PEO/LiTFSI +7.5%LLZO	5.5*10 ⁻⁴ at 30 °C	LiFePO ₄	~150 mAh·g ⁻¹ at 0.1 C, 60 °C	[7]
PEO/LiTFSI+	3 5*10 ⁻⁴ at 45 ⁰C	LiNi _{0.8} Mn _{0.}	151, 125 and 100 mAh·g ⁻¹ delivered at 50,100	[8]
LSTZ	5.5 10 at 45 C	$_{1}Co_{0.1}O_{2}$	and 150 uA·cm ⁻² , 45 °C	
PEO/LiTFSI+	3.5*10 ⁻⁴ at 45 °C	LiFePO ₄	156, 149 and 128 mAh·g ⁻¹ delivered at 50,100	[8]
LSTZ			and 200 uA·cm ⁻² , 45 °C	

References in Table S1.

(1) Y. Zhang, X. Wang, W. Feng, Y. Zhen, P. Zhao, Z. Cai and L. Li, *Ionics*, **2018**, *25*, 1471.

8 | J. Name., 2012, 00, 1-3

- (2) K.-Q. He, J.-W. Zha, P. Du, S.-H. Cheng, C. Liu, Z.-M. Dang and R. K. Li, *Dalton Trans.*, DOI: 10.1039/C9DT00074G.
- (3) Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi, X. Hao, L. Shen, W. Lv, B. Li, Q.-H. Yang, F. Kang and Y.-B. He, *Adv. Funct. Mater.*, **2019**, *29*, 1805301.
- W. Li, S. Zhang, B. Wang, S. Gu, D. Xu, J. Wang, C. Chen and Z. Wen, ACS Appl. Mater. Interfaces, 2018, 10, 23874.
- (5) Z. Sun, Y. Li, S. Zhang, L. Shi, H. Wu, H. Bu and S. Ding, J. Mater. Chem. A, DOI: 10.1039/C9TA00634F.
- (6) C. Fu, S. Lou, Y. Cao, Y. Ma, C. Du, P. Zuo, X. Cheng, W. Tang, Y. Wu, Y. Gao, H. Huo and G. Yin, *Electrochim. Acta*, **2018**, *283*, 1261.
- (7) F. Chen, D. Yang, W. Zha, B. Zhu, Y. Zhang, J. Li, Y. Gu, Q. Shen, L. Zhang and D. R. Sadoway, *Electrochim. Acta*, **2017**, *258*, 1106.
- (8) H. Xu, P.-H. Chien, J. Shi, Y. Li, N. Wu, Y. Liu, Y.-Y. Hu and J. B.Goodenough, *PNAS*, **2019**, *116*, 18815.