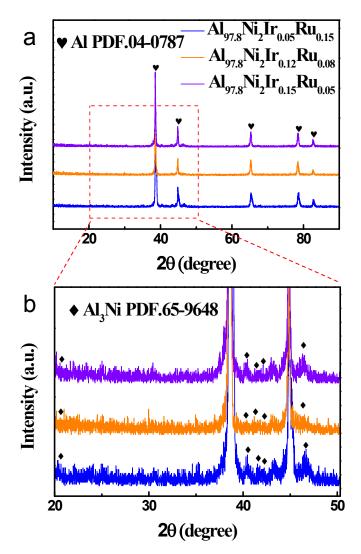
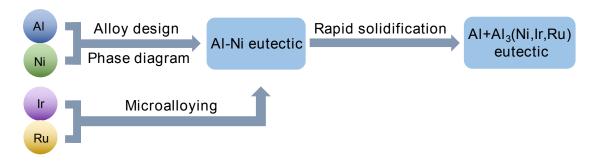
Supporting Information

Hierarchically porous nickel-iridium-ruthenium-aluminum alloys with tunable compositions and electrocatalytic activities towards oxygen/hydrogen evolution reaction in acid electrolyte

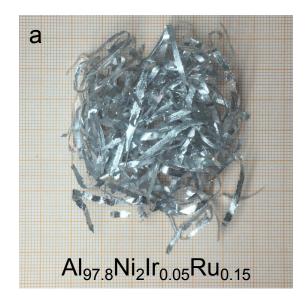
Na Liu,[†] Kuibo Yin,^{‡, *} Conghui Si,[§] Tianyi Kou,[¶] Ying Zhang,[†] Wensheng Ma,[†] Zhonghua Zhang^{†,*}


[†] Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan, 250061, P.R. China

[‡] SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, P. R. China


§Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, School of Material Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P.R. China

Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA


*Corresponding author. Email: zh_zhang@sdu.edu.cn (Z. Zhang) and yinkuibo@seu.edu.cn (K. Yin).

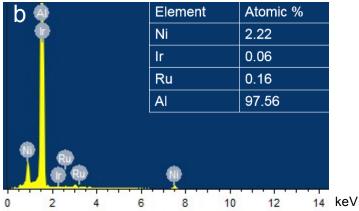
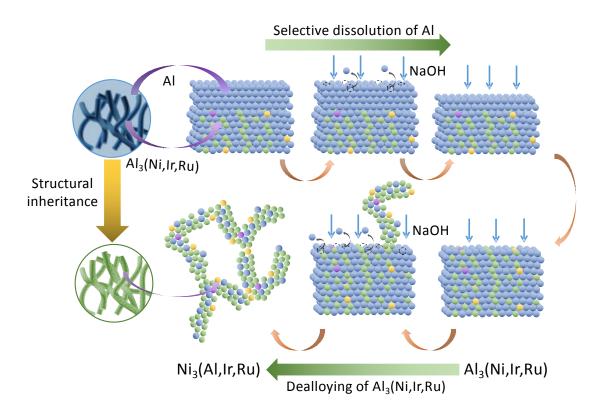
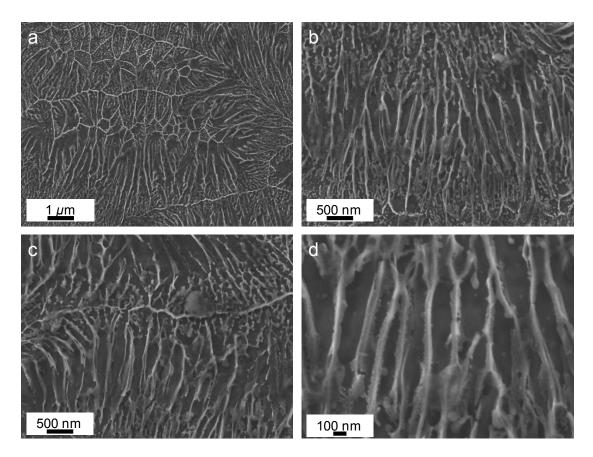
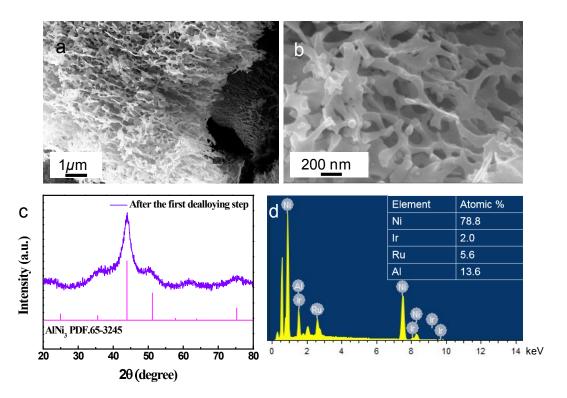


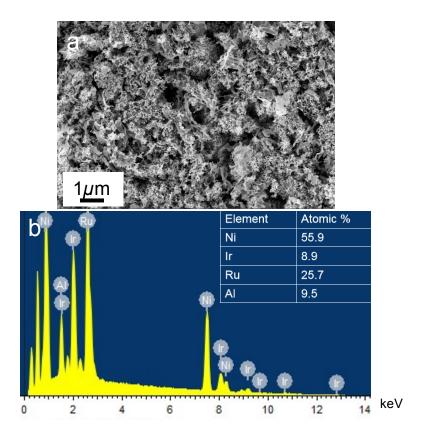
Figure S1. (a) Typical XRD patterns and (b) magnified XRD patterns of $Al_{97.8}Ni_2Ir_xRu_{0.2-x}$ (x = 0.05, 0.12, 0.15) precursor ribbons.



Scheme S1. Schematic illustration showing the formation of Al and nanowire-like Al₃(Ni,Ir,Ru) eutectic.




Figure S2. (a) Macrograph of the Al_{97.8}Ni₂Ir_{0.05}Ru_{0.15} precursor alloy ribbons and (b) a typical EDX spectrum. The corresponding compositions are listed in Figure S2b as an inset, and consistent with the nominal compositions of the precursor alloy.


Scheme S2. Schematic illustration showing the first dealloying step of $Al_{97.8}Ni_2Ir_xRu_{0.2-}$ x precursor alloy ribbons.

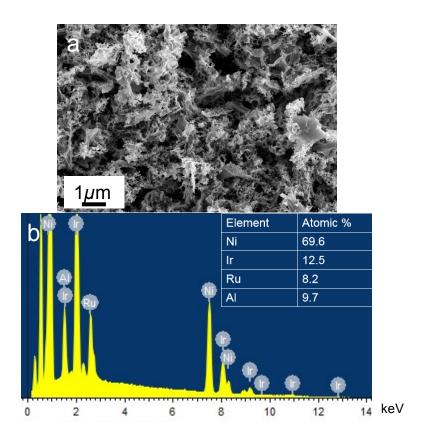
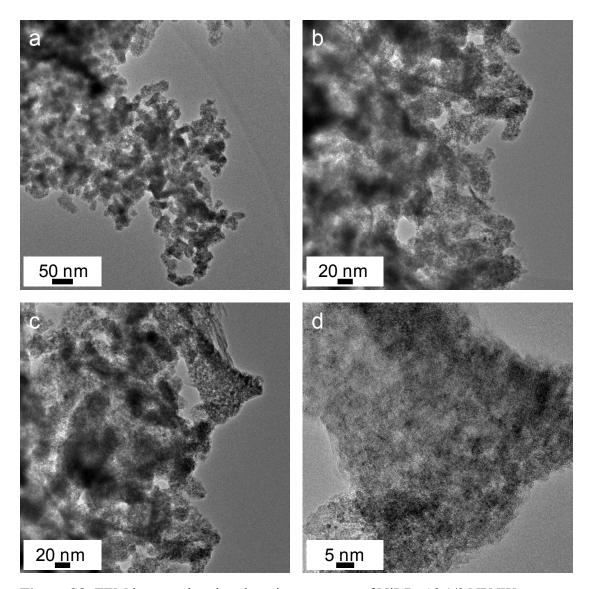
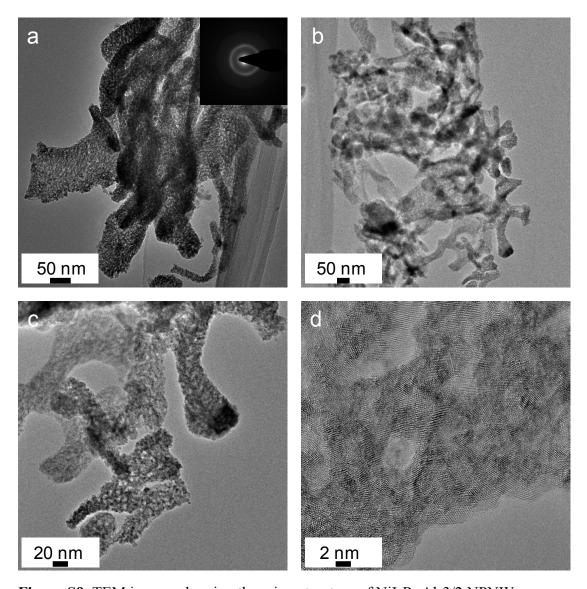
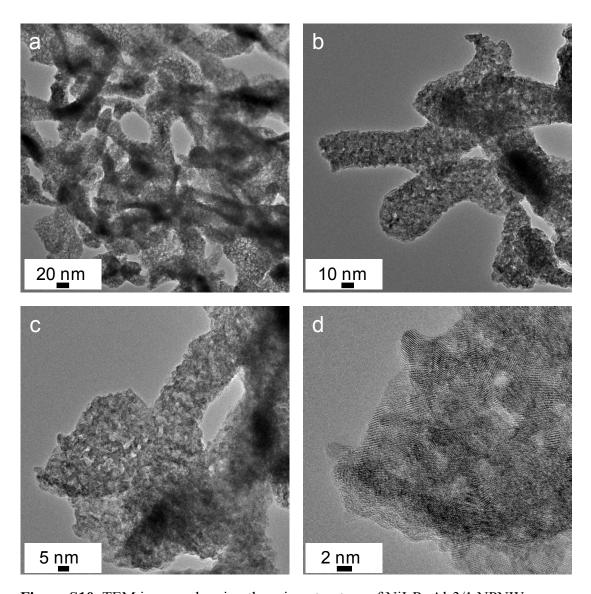
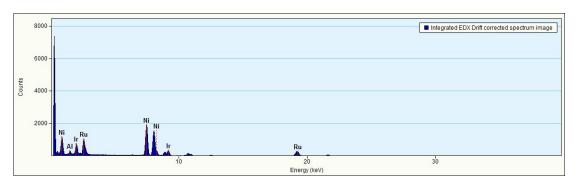

Figure S3. (a) Typical SEM images of the $Al_{97.8}Ni_2Ir_{0.05}Ru_{0.15}$ precursor after being immersed in the 0.1 wt.% HF solution for 8 min.

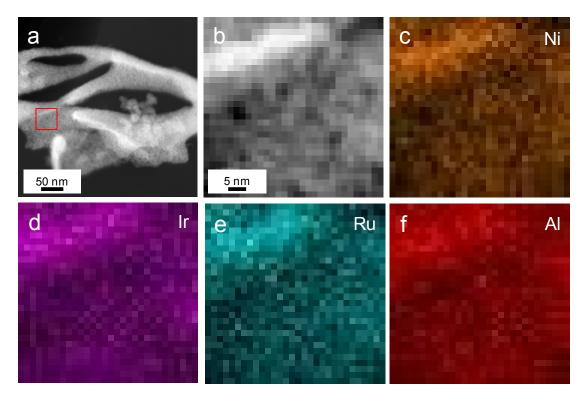

Figure S4. (a-b) SEM images, (c) XRD pattern and (d) typical EDX spectrum of Al_{97.8}Ni₂Ir_{0.05}Ru_{0.15} precursor alloy after the first dealloying step in the 2 M NaOH solution. The corresponding compositions are listed in Figure S4d. During the first-step dealloying in the NaOH solution, most of Al was etched away.

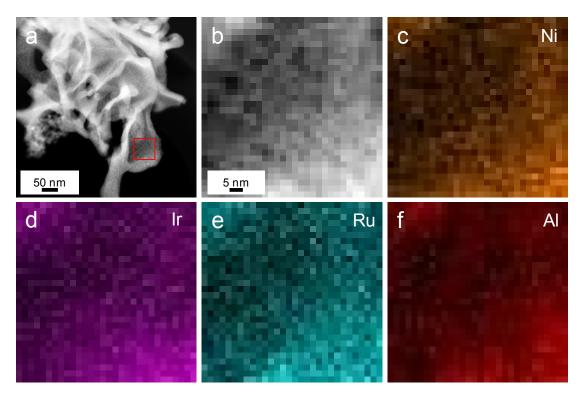

Figure S5. (a) SEM image and (b) typical EDX spectrum of NiIrRuAl-1/3 NPNWs obtained by the two-step dealloying method. The corresponding compositions are listed in Figure S5b.

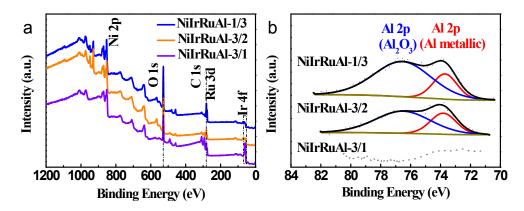

Figure S6. (a) SEM image and (b) typical EDX spectrum of NiIrRuAl-3/2 NPNWs obtained by the two-step dealloying method. The corresponding compositions are listed in Figure S6b.


Figure S7. (a) SEM image and (b) typical EDX spectrum of NiIrRuAl-3/1 NPNWs obtained by the two-step dealloying method. The corresponding compositions are listed in Figure S7b.


Figure S8. TEM images showing the microstructure of NiIrRuAl-1/3 NPNWs.


Figure S9. TEM images showing the microstructure of NiIrRuAl-3/2 NPNWs.


Figure S10. TEM images showing the microstructure of NiIrRuAl-3/1 NPNWs.


Figure S11. Integrated EDX drift corrected spectrum of NiIrRuAl-1/3 NPNWs.

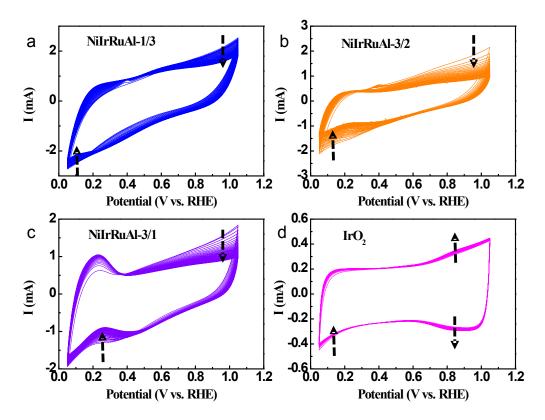
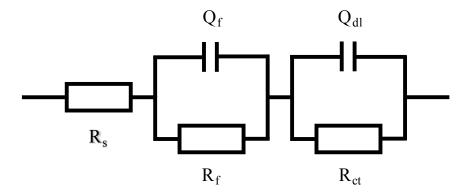
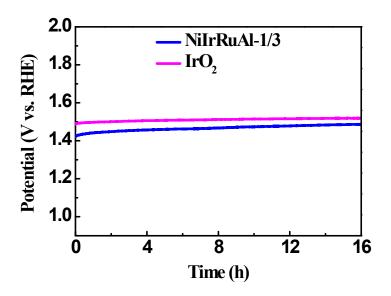
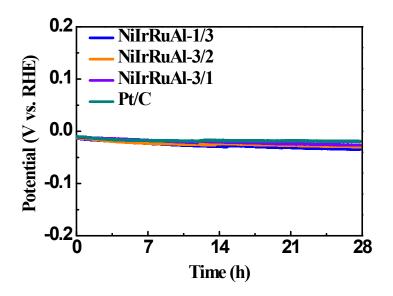
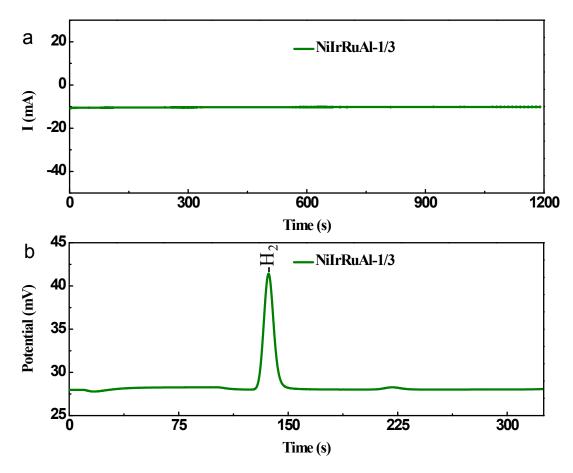

Figure S12. (a) STEM image showing the microstructure of the NiIrRuAl-1/3 NPNWs. (b) The marked area for EDX-mapping. (c-f) EDX-mapping images corresponding to the marked area in (a).

Figure S13. (a) STEM image showing the microstructure of the NiIrRuAl-1/3 NPNWs. (b) The marked area for EDX-mapping. (c-f) EDX-mapping images corresponding to the marked area in (a).

Figure S14. (a) XPS broad scan spectra of the NiIrRuAl NPNWs. (b) XPS spectra of Al 2p for NiIrRuAl NPNWs. For NiIrRuAl-1/3 and NiIrRuAl-3/2 NPNWs, the high resolution Al 2p XPS spectra can be divided into two peaks in which the larger area of the peak is the oxide state, suggesting that Al was readily oxidized in air. It should be noted that the Al 2p peak for NiIrRuAl-3/1 NPNWs is extremely weak, indicating that the content of Al is very low on the surface of the NiIrRuAl-3/1 NPNWs.

Figure S15. Voltammetric activation processes of (a) NiIrRuAl-1/3 (b) NiIrRuAl-3/2 (c) NiIrRuAl-3/1 NPNWs and (d) IrO₂ for OER at 500 mV s⁻¹ for 50 cycles in the N₂-saturated 0.1 M HClO₄ solution.


Figure S16. Equivalent circuit for fitting of the EIS results in Figure 5e.

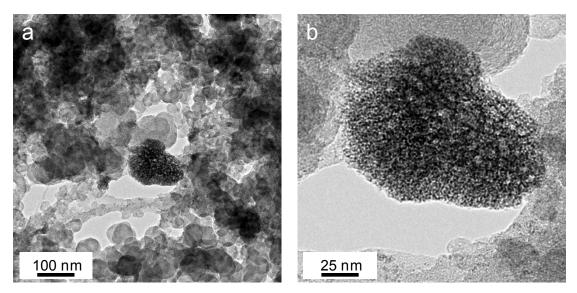

Figure S17. Long-term stability measurement of NiIrRuAl-1/3 NPNWs and commercial IrO₂ catalysts loaded on CC at 5 mA cm⁻².

Figure S18. The long-term stability of the four catalysts loaded on CC at a constant current density of 5 mA cm⁻².

Figure S19. (a) I-t curve of NiIrRuAl-1/3 NPNWs in an Ar-saturated 0.1 M $HClO_4$ solution at -0.17 V vs. RHE without iR-correction. (b) A representative gas chromatogram curve of the H_2 emitted during HER using the NiIrRuAl-1/3 NPNWs catalyst.

Figure S20. TEM images of the NiIrRuAl-1/3 catalyst at the anode (OER) after long-term stability measurement of overall water splitting.

Table S1. Comparisons of OER activities of NiIrRuAl catalysts with those of recently reported Ir-based, Ru-based and Ir-Ru-based OER catalysts in acidic electrolyte. The loading was based upon more noble elements (Ir, Ru or Ir+Ru).

		Loading	Tafel slope	Electrolyte	Refs.
Catalyst	η_{10} (mV)	(μg cm ⁻²)	(mV dec ⁻¹)		
NiIrRuAl-1/3	237	16.5	50	0.1 M HClO ₄	This work
NiIrRuAl-3/2	274	14.3	57	0.1 M HClO ₄	This work
NiIrRuAl-3/1	289	19.6	65	0.1 M HClO ₄	This work
Co Duly	22.5	50	((,))	0.1 M HClO ₄	Adv. Mater.,
Co-RuIr	235	50	66.9		2019, 31, 1900510
Ni _{0.34} Co _{0.46} Ir _{0.2} O ₈	280	200	40	0.1 M HClO ₄	Appl. Catal. B-Environ.,
1410.34400.46110.208	280	200	40		244 (2019) 295–302
Ir@IrCo NPs	270	18.9	71.8	0.5 M H ₂ SO ₄	Electrochim. Acta,
11011001113	270	10.5	71.0	0.3 141 112504	2019, 307, 206-213
CIS@Ir ₃₄ Ru ₆₄	225.8	12	57.6	0.1 M HClO ₄	J. Mater. Chem. A,
C15(0)1134Ru ₆₄					2018, 6, 16130
IrNi-RD	290~310	310 24.5	N/A	0.05 M H ₂ SO ₄	ACS Nano,
IIVI-KD	270~310	24.3	IV/A	0.03 W 1125O4	2018, 12, 7371-7379
NiIr-200-CL	320	11.7 40.3	40.3	0.1 M HClO ₄	ACS Catal.,
14III 200 CE	320	11.7	10.5	0.1 111110104	2018, 8, 10498-10520
IrO _x /SrIrO ₃	270~290	N/A	N/A	0.5 M H ₂ SO ₄	Science,
$110_{\chi'}$ 51110_3	270 -270				2016, 353, 1011
IrTe NTs	290	25.5	60.3	0.1 M HClO ₄	J. Mater. Chem. A,
					2018, 6, 8855–8859
IrNiFe NPs	284	~92	34.6	0.5 M H ₂ SO ₄	J. Mater. Chem. A,
					2017, 5, 24836–24841
$W_{0.57}Ir_{0.43}O_3$	370	N/A	85	1 M H ₂ SO ₄	Energ. Environ. Sci.,
VV 0.5/110.43O3	<i>31</i> 0	IV/A			2017, 10, 2432-2440

^{*} With iR compensation

Table S2. Comparisons of three resistance values of EIS results (Figure 5e) for the NiIrRuAl NPNWs and IrO₂ catalysts.

Catalyst	NiIrRuAl-1/3	NiIrRuAl-3/2	NiIrRuAl-3/1	IrO ₂
Rs	24.4	24.6	24.9	24.0
R_{f}	5.5	7.3	9.3	13.3
R_{ct}	6.7	14.6	21.2	44.2

Table S3. Comparisons of HER activities of NiIrRuAl catalysts with those of recently reported Ir-based and Ru-based HER catalysts in acidic electrolyte. The loading was based upon more noble elements (Ir, Ru or Ir+Ru).

		Loading	Tafel slope	Electrolyte	Refs.
Catalyst	η_{10} (mV)	(μg cm ⁻²)	(mV dec ⁻¹)		
NiIrRuAl-1/3	29	16.5	44	0.1 M HClO ₄	This work
NiIrRuAl-3/2	17	14.3	30	0.1 M HClO ₄	This work
NiIrRuAl-3/1	14	19.6	23	0.1 M HClO ₄	This work
IrCo alloy	22.0	19.0	25.7	0.5 M H ₂ SO ₄	Electrochim. Acta,
irco anoy	23.9	18.9	25.7		2019, 307, 206-213
Co-RuIr	14	50	31.1	0.1 M HClO ₄	Adv. Mater.,
Co-Kuii	14	50	31.1		2019, 31, 1900510
D OC D	12	750	30	0.5 M H ₂ SO ₄	Adv. Mater.,
Ru@GnP	13				2018, 30, 1803676
D 0011	0.5	27/4	20	0.53411.00	Nature Nanotechnol,
Ru@C ₂ N	9.5	N/A	30	0.5 M H ₂ SO ₄	2017, 12, 441-446
CIC A. D.	7.6	12	25.1	0.1 M HClO	J. Mater. Chem. A,
CIS@Ir ₄₈ Ru ₅₂	7.6	12	25.1	0.1 M HClO ₄	2018, 6, 16130
LANG	10	12.5	27/4	0.1.14.14.01.0	Adv. Funct. Mater.,
IrNi	19	12.5	N/A	0.1 M HClO ₄	2017, 27, 1700886
CFP/NiCo ₂ O ₄ /Co	52	NI/A	34	0.5 M H ₂ SO ₄	Nanoscale,
$_{0.57}\mathrm{Ni}_{0.43}\mathrm{LMOs}$		N/A			2016, 8, 1390-1400
Ir/IrO ₂ NF-300	27	11.4	30.1	1 M H ₂ SO ₄	ACS Sustainable
					Chem. Eng.,
					2019, 7, 8613–8620
LAKE - ND -	24	~92	34.6	0.5 M H ₂ SO ₄	J. Mater. Chem. A,
IrNiFe NPs					2017, 5, 24836–24841

^{*} With iR compensation

Table S4. Online gas chromatography measurement of H_2 produced during HER using the NiIrRuAl-1/3 NPNWs catalyst.

Catalyst	Average	Average H ₂ concentration	Average Faradic	
	Current (mA)	(ppm)	efficiency (%)	
NiIrRuAl-1/3	10	3542.77	93.17	