Supporting Information

A Lattice-matched Interface between In-situ/Artificial SEIs Inhibiting SEI

Decomposition for Enhanced Lithium Storage

Xiaosheng Song,^{a‡} Shiyu Li,^{b‡} Xifei Li,^{c,d*} Yaohui Zhang,^{e*} Xiaobing Wang,^a Zhimin Bai,^f

Hirbod Maleki Kheimeh Sari,^d Yong Zhao,^{a*} Jiujun Zhang^{d,g}

^aKey Lab for Special Functional Materials of Ministry of Education; National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology; School of Materials Science and Engineering; Collaborative Innovation Center of Nano Functional Materials and Applications; Henan University, Kaifeng, Henan, 475004, P. R. China E-mail: <u>zhaoyong@henu.edu.cn</u> ^bCollege of Energy, Soochow Institute for Energy and Materials InnovationS, Soochow

^oCollege of Energy, Soochow Institute for Energy and Materials InnovationS, Soochow University, Suzhou, 215006, P. R. China

^cEnergy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387, P. R. China, E-mail: <u>xfli2011@hotmail.com</u>

^dXi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, P. R. China

^eSchool of Physics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China E-mail: <u>hitcrazyzyh@hit.edu.cn</u>

^fBeijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; Nanomaterials and Energy Lab; National Laboratory of Mineral Materials; School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China

^gInstitute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China.

Figure S1 Cycling performance at 1 A g⁻¹ of LAO-NS for 10, 50, 100 ALD cycles, respectively.

Figure S2 Morphologies of (a, b, and c) NS, (d, e, and f) AO-NS, (g, h, and i) LAO-NS. (a, d, and g): side view, (b, e, and h): magnified side view, and (c, f, and i): top view of (NS, AO-NS, and LAO-NS), respectively.

Figure S3 Theoretical thickness calculation of Al_2O_3 with P63/mmc and LiAlO₂ with Pna21 for 50 ALD cycles.

Figure S4 EDS analysis of (a) AO-NS and (b) LAO-NS.

Figure S5 XRD patterns of (a) NS, (b) AO-NS, and (c) LAO-NS, referring to heazlewoodite Ni₃S₂.

Capacity retention /%	Ours LAO-NS	Ref. 28	Ref. 30a	Ref. 30b	Ref. 30c	Ref. 30d	Ref. 30e	Ref. 30f
Current density (mA g ⁻¹)	50	100	890	45	50	170	50	500
After 20 cycles	98.4		80.8				82.7	
After 60 cycles	98.5	89.0			90.3			
After 100 cycles	98.8			74.4		95.3		96.0

Table S1. Comparison of the capacity retention (refer to the capacity of the 2nd cycle) of ours LAO-NS to other reported nickel sulfide based electrodes for LIBs.

Figure S6 Al 2*p* High-resolution XPS spectra of (a) AO-NS and (b) LAO-NS after discharging to 1.35 V, 0.01 V, and recharging to 2.0 V and 3.0 V, respectively.

Figure S7 Equivalent circuit used to simulate resultant Nyquist plots.

Figure S8 Morphologies of (a, b, and c) NS, (d, e, and f) AO-NS, (g, h, and i) LAO-NS after 100 cycles. (a, d, and g): top view, (b, e, and h): magnified top view, and (c, f, and i): side view of (NS, AO-NS, and LAO-NS), respectively.