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Supplementry Information

Experimental Section 

Table S1 Input parameters of each operating condition, where BL - biomass loading, IL - 

inoculum loading and EC - electrical conductivity of anolyte

No Input parameters Unit Output parameters

1 pH -
OCV (mV)/current density (mA m-2)/ 

power density (mW m-2)

2 BL %
OCV (mV)/current density (mA m-2)/ 

power density (mW m-2)

3 IL %
OCV (mV)/current density (mA m-2)/ 

power density (mW m-2)

4 EC mS cm-1
OCV (mV)/current density (mA m-2)/ 

power density (mW m-2)
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Fig. S1. The schematic representation of situation explaining the neural networks are 

adjusted, or trained, so that a particular input leads to a specific target output taken from 

MATLAB manual

Fig. S2. A schematic layout of the ANN network containing inputs as, IL - percentage of 

inoculum loading, BL - percentage of biomass loading, and EC - electrical conductivity

16S V3 - V4 metagenome sequencing and analysis

Sequencing methodology 

25 ng of DNA was used to amplify 16S rRNA hyper variable region V3 - V4. The reaction 

includes KAPA HiFi HotStart Ready Mix and 100 nm final concentrations of modified 341F and 

785R primers.a The PCR involved an initial denaturation of 95 °C for 5 min followed by 25 
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cycles of 95 °C for 30 s, 55 °C for 45 s and 72 °C for 30 s and a final extension at 72 °C for 7 

min. The amplicons were purified using Ampure beads to remove unused primers. Additional 

8 cycles of PCR were performed using Illumina barcoded adapters to prepare the sequencing 

libraries. V3 - V4 primers used for the sequencing are shown in Table S2.

Table S2 V3 - V4 primers used for sequencing

Sl. no. Primer name Primer sequence 5' - 3'

1 V3V4F CCTACGGGNGGCWGCAG

2 V3V4R GACTACHVGGGTATCTAATCC

Sequence data QC

The sequence data was generated using Illumina MiSeq. Data quality was checked using 

FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] and MultiQC 

software. The data was checked for base call quality distribution, % bases above Q20, Q30, 

%GC, and sequencing adapter contamination (Fig. S3). All the samples have passed QC 

threshold (Q20 > 95%).

Fig. S3.  Histogram of reads with average sequence quality scores
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Data analysis 

The reads were trimmed (20 bp) from 5' end to remove the degenerate primers. The 

trimmed reads were processed to remove adapter sequences and low quality bases using 

Trimgalore. The QC passed reads were imported into mothur and the pairs were aligned with 

each other to form contigs.b The contigs were screened for errors and only those between 

300 bp and 532 bp were retained. Any contig with ambiguous base calls is rejected. The high 

quality contigs were checked for identical sequences and duplicates were merged. After this 

process, the gaps and the overhang at the ends from the contigs were removed and processed 

for chimera removal which may have formed due to PCR errors. UCHIME algorithm was used 

to flag contigs with chimeric regions.c A known reference of all the chimeric sequences was 

used to identify and remove possible chimeric sequences. The filtered contigs were processed 

and classified into taxonomical outlines based on the GREENGENES v.13.8 - 99 database.d The 

contigs were then clustered into OTUs (Operational Taxonomic Units). After the classification, 

OTU abundance was estimated. PICRUSt was used to predict gene family abundance.e 

PICRUSt program was designed to estimate the gene families contributing to a metagenome 

by bacteria or archaea identified using 16S rRNA sequencing. The 16S rRNA copy numbers 

were normalized by PICRUSt’s precalculated files. The metagenomes were predicted using 

predict_metagenomes.py script. The predicted pathways were collapsed into higher 

categories. OTU contributions for the particular functions were estimated by 

metagenome_contributions.py script. The 16S rRNA metagenome work flow is shown in Fig. 

S4.   
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Fig. S4. The workflow of 16S rRNA metagenome
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Results

Table S3 Physico-chemical characterization of sugarcane effluent before pretreatment

Parameters Sugarcane Effluent
 (SE)

pH 4.6

Temperature 32.8 °C

Colour Dark greenish brown

COD 4538 mg L-1

TSS 348 mg L-1

TDS 882 mg L-1

TVS 829 mg L-1

Total 
carbohydrates 18 µg mL-1

Total proteins 80 µg mL-1

C:N 16:3

Conductivity 10 mS cm-1

Table S4 Fitted Nyquist parameters and total internal resistance of the fabricated MFCs with 

different ionic conductivity

Systems
Rs

(Ω cm2)

Rc

(Ω cm2)

Ra

(Ω cm2)

IR

(Ω cm2)

SE (10 mS cm-1 ) 7.47 × 102 1.83 × 103 6.29 × 102 3.20 × 103

SE ( 20 mS cm-1 ) 6.30 × 101 1.03 × 103 4.86 × 102 1.58 × 103

SE ( 30 mS cm-1 ) 1.80 × 101 9.76 × 102 3.00 × 101 1.02 × 103

SE ( 40 mS cm-1 ) 7.30 × 101 2.52 × 103 3.70 × 101 2.63 × 103

SE ( 50 mS cm-1 ) 3.01 × 102 4.37 × 103 1.52 × 102 4.82 × 103
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Fig. S5. (A) Cell voltage, (B) current density and (C) power density curve of MFCs fabricated 

with varying biomass loading with the course of time. Error bars represent standard deviation 

of four independent experiments. 

Fig. S6. (A) Cell voltage, (B) current density and (C) power density curve of MFCs fabricated 

with varying pH with the course of time. Error bars represent standard deviation of four 

independent experiments.
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Fig. S7. (A) Cell voltage, (B) current density and (C) power density curve of MFCs fabricated 

with varying ionic conductivity with the course of time. Error bars represent standard 

deviation of four independent experiments.  

Fig. S8. (A) Fitted results of Nyquist plots of MFCs with varying ionic conductivity (-○-)10 mS 

cm-1, (-∆-) 20 mS cm-1 (-□-) 30 mS cm-1 (-●-) 40 mS cm-1 (-▲-) 50 mS cm-1 and  Equivalent 

circuit used for fitting the nyquist plots of MFCs with varying ionic conductivity
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ANN modelling and its validation: 

The effect of interaction among the four different variables on the enhancement of 

MFC performance is studied using ANN. The Design of Experiments (DOE; Design expert, 

version 7.0.0, USA) is used for the statistical modelling of MFC.f The experimental design 

consists of 54 runs with two replicas each and is shown in Table S5. 

Table S5 DOE for ANN modeling using four input variable and its outputs

Input variables Output variables
Variable 

1
Variable 

2
Variable 

3
Variable 4

Response 
1

Response 
2

Response 
3

Run
Biomass 
loading 

(%)

Inoculum 
loading 

(%)
pH

Conductivity 
(mS cm-1)

Cell 
voltage 

(mV)

Current 
density

 (mA cm-

2)

Power 
density

 (mW m-

2)
1 30 30 7 20 743 6.45 4792

2 30 30 8 20 728 6.30 4586

3 30 30 9 20 741 6.51 4824

4 30 30 7 25 759 6.53 4956

5 30 30 8 25 765 6.62 5064

6 30 30 9 25 745 6.44 4798

7 30 30 7 30 781 6.80 5312

8 30 30 8 30 772 6.58 5079

9 30 30 9 30 764 6.86 5241

10 30 35 7 20 707 6.22 4397

11 30 35 8 20 704 6.25 4400

12 30 35 9 20 698 6.23 4348

13 30 35 7 25 709 5.99 4247

14 30 35 8 25 707 6.31 4461

15 30 35 9 25 719 6.44 4630

16 30 35 7 30 718 6.32 4537

17 30 35 8 30 729 6.23 4541

18 30 35 9 30 747 6.52 4870
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19 30 40 7 20 528 4.16 2196

20 30 40 8 20 555 4.78 2652

21 30 40 9 20 516 4.61 2378

22 30 40 7 25 606 4.64 2811

23 30 40 8 25 603 5.19 3120

24 30 40 9 25 647 5.77 3733

25 30 40 7 30 621 5.87 3645

26 30 40 8 30 660 6.10 4026

27 30 40 9 30 654 6.48 4237

28 50 30 7 20 666 4.21 2803

29 50 30 8 20 699 6.11 4270

30 50 30 9 20 729 6.41 4673

31 50 30 7 25 725 4.21 3052

32 50 30 8 25 717 6.30 4517

33 50 30 9 25 738 5.98 4413

34 50 30 7 30 732 4.29 3140

35 50 30 8 30 733 6.75 4947

36 50 30 9 30 925 7.83 7242

37 50 35 7 20 747 4.98 3720

38 50 35 8 20 727 6.82 4958

39 50 35 9 20 751 7.16 5377

40 50 35 7 25 731 5.67 4144

41 50 35 8 25 735 5.87 4314

42 50 35 9 25 759 6.88 5222

43 50 35 7 30 734 6.08 4462

44 50 35 8 30 745 5.16 3844

45 50 35 9 30 776 7.84 6084

46 50 40 7 20 502 4.53 2274

47 50 40 8 20 463 5.60 2592

48 50 40 9 20 451 6.93 3125

49 50 40 7 25 496 4.89 2425
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50 50 40 8 25 510 5.86 2988

51 50 40 9 25 536 6.17 3308

52 50 40 7 30 522 4.98 2599

53 50 40 8 30 534 6.20 3310

54 50 40 9 30 547 6.00 3282

According to DOE matrix, a combination of 50% of biomass loading, 30% of inoculum 

loading, ionic conductivity of 30 mS cm-1 and pH of 9 is optimum for maximal MFC 

performance. Further, the concurrent effect of the variables on biofilm formation is 

determined using ANN and to correlate the power generation efficiency in the sugarcane 

effluent based MFC using anaerobic inoculum. Four input variables viz, Biomass loading, % of 

Inoculum added, pH, and ionic conductivity are used to feed forward neural network. Three 

output variables: cell voltage (mV), current density (mA cm-2) and power density (mW m-2) 

are used for validation. The MLP layer consists of an input layer of N neurons, a hidden layer 

of M neurons and an output layer of K neurons, the relationship between different layers can 

be described by equation (1),

……………………(1)
𝑔𝑘 = 𝐹[ 𝑀

∑
𝑗 = 1

𝑊𝑘𝑗 𝑓( 𝑁

∑
𝑖 = 1

𝑤𝑗𝑖𝑥𝑖 + 𝜃𝑗) +  𝑏𝑘]
where, j = 1, 2…M; i = 1,2….M and k = 1,2…K. In equation 1, wji is the weight connecting ith 

neuron in the input layer to the  neuron in the hidden layer,  is the bias of the  neuron 𝑗𝑡ℎ 𝜃𝑗 𝑗𝑡ℎ

in the hidden layer. Similarly,  is the weight connecting the  neuron in the hidden layer 𝑊𝑘𝑗 𝑗𝑡ℎ

to the  neuron in the output layer and  is the bias of the  neuron in the output layer. 𝑘𝑡ℎ 𝑏𝑘 𝑘𝑡ℎ

Optimization of the topology of the ANN is the first crucial step. Of the various architectures 

investigated, one hidden layer with ten neurons is considered as the optimum configuration, 

which is based upon the regression values obtained. The dataset contains 216 input/output 

patterns for fitting. Out of these, 152 samples (70%) are taken for training and 32 samples 

(15%) each is used for validation and testing. The training data are the biggest set of data used 

by neural network to learn the pattern presented in the data by updating the network 

weights. Diagram of neural network used for the present study is shown in Fig. S9. 
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Fig. S9. Diagram of neural network used for the present study

The testing data is used for the evaluation of the quality of the network. The final 

performance and generalization ability of the trained network are carried out using validation 

data. To determine the optimum number of hidden nodes, various topologies are used, where 

the number of nodes in the hidden layer is varied from 2 to 12. The error function used in the 

present study is Root Mean Square Error (RMSE). Based on the minimum value of RMSE, we 

used 10 neurons in the hidden layer for the present study (Fig. S10). The best regression curve 

obtained using 10 neurons in the hidden layer are shown in Fig. S11.

Fig. S10. The graph showing the relationship between number of neurons and root mean 

square error (RMSE)
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Fig. S11. Training, validation, and testing mean square error for the Levenberg – Marquardt 

algorithm with the best validation performance of 1170.8423 at epoch 8

The correlation coefficients for training, validation and testing for the data used in the 

present ANN model are 0.96063, 0.97251, and 0.96001, respectively are shown in Fig. S12. 

The training is stopped after 14 epochs as shown in Fig. S11, where the best performance is 

obtained for epoch 8 with a value of 1170.84. For the best fit, the data should fall along a 45 

degree line, where the network outputs are equal to the experimental outputs. It evident 

from the figure that, almost all the data points fall on this line, except a few data points. Fig. 

S13 shows the error histogram of the present work. The blue bars in the figure represent 

training data, the green bars represent validation data and the red bars represent the testing 

data. It is observed that, most of the errors fall between -21 and 21. But some of the training 

data points are outside this range. These further confirm that, neural network model can 

effectively reproduce the experimental results. 
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Fig. S12. Training, validation, and testing regression for the Levenberg–Marquardt algorithm

Fig. S13. The error histogram with 20 bins showing that most of the errors falls between - 21 

and 21
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Fig. S14. Trend of open cell voltage with time of (-○-) MFC - 1, (-∆-) MFC - 2 and (-□-) MFC–3. 
Error bars represent standard deviation of four independent experiments.
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A1 A2 

B1 B2 

C1 C2 

Fig. S15. CLSM images of anode in different anolyte of (A1 and A2) - MFC - 1, (B1 and B2) - 

MFC - 2 and (C1 and C2) - MFC – 3
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Fig. S16. Graphical representation of the COD removal efficiency and Columbic efficiency of 

fabricated MFCs

A B

Fig. S17. (A) Histogram representing contig length distribution and (B) Rarefaction curve 

shows the measure of diversity that has been captured by a given number of reads in a sample
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Fig. S18. Alpha diversity indices showing the richness in bacterial diversity with Chao 1 (318), 

ACE (329), Shannon (3.49), Simpson (0.92), InvSimpson (13.03) and Fisher (58.08)

Fig. S19. Frequency of top 10 genus that present in the bacterial community of sugarcane 

effluent based Microbial Fuel Cell
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Fig. S20. Frequency of top 10 species that present in the bacterial community of sugarcane 

effluent based Microbial Fuel Cell

Table S6 Reagent cost for the development of anode materials

Reagents
Quantity 
needed

Annual 
cost (USD)

Fe2TiO5 2 g L-1 0.01

NaOH 5% 0.04

HCl 3% 0.04

SnCl2 10 g L-1 0.09

PdCl2 10 g L-1 1.56

NiSO4 30 g L-1 0.18

C4H6O4 25 g L-1 0.14

NaPO2H2 25 g L-1 0.03

Total 2.01
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Table S7 Cost of operating and maintenance other than reagents

Items Remark
Unit cost

(USD)
Annual 

cost (USD)
Costs of routine 

maintenance

Once in a month

(12 times a year)
7.02 84.28

Costs of water 

quality monitoring

Once in a month

(12 times a year)
7.02 84.28

Total 168.56

Table S8 Reagent cost for catholyte

Reagents Quantity needed Annual Cost (USD)

NaH2PO4 4.4 g L-1 0.04

Na2HPO4 3.4 g L-1 0.04

K3[Fe(CN)6] 16.6 g L-1 0.95

Total 1.04

Table S9 Cost of other accessories

Items   Cost (USD)

Double - chambered plexiglass (40.5 mL) 11.24

Mild steel (Rs. 660/m2) 0.42

Nafion 117 (10 × 10 cm) 15.11

Gaskets (Rs. 1000/m2) 0.70

Stainless steel 0.79

Total 28.26
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