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Supplementry Information

Experimental Section

Table S1 Input parameters of each operating condition, where BL - biomass loading, IL -

inoculum loading and EC - electrical conductivity of anolyte

No Input parameters Unit Output parameters
OCV (mV)/current density (mA m=2)/
1 pH -
power density (mW m2)
OCV (mV)/current density (mA m2)/
2 BL %
power density (mW m2)
OCV (mV)/current density (mA m2)/
3 IL %
power density (mW m2)
OCV (mV)/current density (mA m2)/
4 EC mS cm’?

power density (mW m2)
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Fig. S1. The schematic representation of situation explaining the neural networks are
adjusted, or trained, so that a particular input leads to a specific target output taken from

MATLAB manual
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Fig. S2. A schematic layout of the ANN network containing inputs as, IL - percentage of

inoculum loading, BL - percentage of biomass loading, and EC - electrical conductivity

16S V3 - V4 metagenome sequencing and analysis
Sequencing methodology

25 ng of DNA was used to amplify 16S rRNA hyper variable region V3 - V4. The reaction
includes KAPA HiFi HotStart Ready Mix and 100 nm final concentrations of modified 341F and

785R primers.2 The PCR involved an initial denaturation of 95 °C for 5 min followed by 25
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cycles of 95 °C for 30 s, 55 °C for 45 s and 72 °C for 30 s and a final extension at 72 °C for 7
min. The amplicons were purified using Ampure beads to remove unused primers. Additional
8 cycles of PCR were performed using Illumina barcoded adapters to prepare the sequencing

libraries. V3 - V4 primers used for the sequencing are shown in Table S2.

Table S2 V3 - V4 primers used for sequencing

Sl. no.  Primer name Primer sequence 5' - 3'
1 V3V4F CCTACGGGNGGCWGCAG
2 V3V4R GACTACHVGGGTATCTAATCC

Sequence data QC

The sequence data was generated using Illumina MiSeq. Data quality was checked using
FastQC  [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] and  MultiQC
software. The data was checked for base call quality distribution, % bases above Q20, Q30,
%GC, and sequencing adapter contamination (Fig. S3). All the samples have passed QC

threshold (Q20 > 95%).

10000

8000 (/\\.

/

- /// »\\‘\
/ ‘ ‘\\

||
\
\

5 10 15 20 25 30

Mean Sequence Quality (Phred Score)

6000

Count

Fig. S3. Histogram of reads with average sequence quality scores



Data analysis

The reads were trimmed (20 bp) from 5' end to remove the degenerate primers. The
trimmed reads were processed to remove adapter sequences and low quality bases using
Trimgalore. The QC passed reads were imported into mothur and the pairs were aligned with
each other to form contigs. The contigs were screened for errors and only those between
300 bp and 532 bp were retained. Any contig with ambiguous base calls is rejected. The high
quality contigs were checked for identical sequences and duplicates were merged. After this
process, the gaps and the overhang at the ends from the contigs were removed and processed
for chimera removal which may have formed due to PCR errors. UCHIME algorithm was used
to flag contigs with chimeric regions.© A known reference of all the chimeric sequences was
used to identify and remove possible chimeric sequences. The filtered contigs were processed
and classified into taxonomical outlines based on the GREENGENES v.13.8 - 99 database.? The
contigs were then clustered into OTUs (Operational Taxonomic Units). After the classification,
OTU abundance was estimated. PICRUSt was used to predict gene family abundance.®
PICRUSt program was designed to estimate the gene families contributing to a metagenome
by bacteria or archaea identified using 16S rRNA sequencing. The 16S rRNA copy numbers
were normalized by PICRUSt’s precalculated files. The metagenomes were predicted using
predict_metagenomes.py script. The predicted pathways were collapsed into higher
categories. OTU contributions for the particular functions were estimated by
metagenome_contributions.py script. The 16S rRNA metagenome work flow is shown in Fig.

S4.
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Results

Table S3 Physico-chemical characterization of sugarcane effluent before pretreatment

Parameters

Sugarcane Effluent

(SE)

pH
Temperature
Colour
CcoD
TSS
TDS

TVS

Total
carbohydrates

Total proteins
C:N

Conductivity

4.6
32.8°C

Dark greenish brown

4538 mg L.
348 mg Lt
882 mgL*

829 mg L?!
18 pug mL?

80 ug mL?
16:3

10 mS cm1?

Table S4 Fitted Nyquist parameters and total internal resistance of the fabricated MFCs with

different ionic conductivity

RS Rc Ra IR
Systems
(Q cm?) (Q cm?) (Q cm?) (Q cm?)
SE (10 mScm?) 7.47 x 102 1.83 x 103 6.29 x 102 3.20x 103
SE(20mScm™) 6.30 x 10! 1.03 x 103 4.86 x 107 1.58 x 103
SE(30mScm?) 1.80x 10!  9.76 x 10?2 3.00 x 101 1.02 x 103
SE (40 mScm™) 7.30x10' 2.52x103 3.70 x 10t 2.63x103
SE(50 mScm™) 3.01 x 102 437 x 103 1.52 x 10?2 4.82 x 103
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Fig. S5. (A) Cell voltage, (B) current density and (C) power density curve of MFCs fabricated

with varying biomass loading with the course of time. Error bars represent standard deviation

of four independent experiments.

i

Cell Voltage (mV)

(mW cm
1] [ 5] L3
= -1 =
= = =3

Power density
[ ]
=

Fig. S6. (A) Cell voltage, (B) current density and (C) power density curve of MFCs fabricated
with varying pH with the course of time. Error bars represent standard deviation of four

independent experiments.
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Fig. S7. (A) Cell voltage, (B) current density and (C) power density curve of MFCs fabricated
with varying ionic conductivity with the course of time. Error bars represent standard

deviation of four independent experiments.
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Fig. S8. (A) Fitted results of Nyquist plots of MFCs with varying ionic conductivity (-0-)10 mS
cml, (-A-) 20 mS cm™? (-0-) 30 mS cm™ (-e-) 40 mS cm™ (-A-) 50 mS cm™ and Equivalent
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ANN modelling and its validation:

The effect of interaction among the four different variables on the enhancement of
MFC performance is studied using ANN. The Design of Experiments (DOE; Design expert,
version 7.0.0, USA) is used for the statistical modelling of MFC.f The experimental design

consists of 54 runs with two replicas each and is shown in Table S5.

Table S5 DOE for ANN modeling using four input variable and its outputs

Input variables Output variables
Variable Variable Variable ) Response Response Response
Variable 4
1 2 3 1 2 3
Run Current Power
Biomass Inoculum . Cell . .
. ] Conductivity density density
loading loading pH voltage
(mS cm?) (MAcm (mMWm-
(%) (%) (mV) 2 z)

1 30 30 7 20 743 6.45 4792
2 30 30 8 20 728 6.30 4586
3 30 30 9 20 741 6.51 4824
4 30 30 7 25 759 6.53 4956
5 30 30 8 25 765 6.62 5064
6 30 30 9 25 745 6.44 4798
7 30 30 7 30 781 6.80 5312
8 30 30 8 30 772 6.58 5079
9 30 30 9 30 764 6.86 5241
10 30 35 7 20 707 6.22 4397
11 30 35 8 20 704 6.25 4400
12 30 35 9 20 698 6.23 4348
13 30 35 7 25 709 5.99 4247
14 30 35 8 25 707 6.31 4461
15 30 35 9 25 719 6.44 4630
16 30 35 7 30 718 6.32 4537
17 30 35 8 30 729 6.23 4541
18 30 35 9 30 747 6.52 4870
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4.16
4.78
4.61
4.64
5.19
5.77
5.87
6.10
6.48
4.21
6.11
6.41
4.21
6.30
5.98
4.29
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6.82
7.16
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6.08
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6.93
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2378
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4237
2803
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4673
3052
4517
4413
3140
4947
7242
3720
4958
5377
4144
4314
5222
4462
3844
6084
2274
2592
3125
2425
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50 50 40 8 25 510 5.86 2988
51 50 40 9 25 536 6.17 3308
52 50 40 7 30 522 4.98 2599
53 50 40 8 30 534 6.20 3310
54 50 40 9 30 547 6.00 3282

According to DOE matrix, a combination of 50% of biomass loading, 30% of inoculum
loading, ionic conductivity of 30 mS cm™® and pH of 9 is optimum for maximal MFC
performance. Further, the concurrent effect of the variables on biofilm formation is
determined using ANN and to correlate the power generation efficiency in the sugarcane
effluent based MFC using anaerobic inoculum. Four input variables viz, Biomass loading, % of
Inoculum added, pH, and ionic conductivity are used to feed forward neural network. Three
output variables: cell voltage (mV), current density (mA cm=) and power density (mW m)
are used for validation. The MLP layer consists of an input layer of N neurons, a hidden layer
of M neurons and an output layer of K neurons, the relationship between different layers can
be described by equation (1),

M N
9= F[/Z ij f(ZWjixi + Hj
=1

i=1

+ b,

where, j=1, 2..M; i=1,2...M and k = 1,2..K. In equation 1, wj is the weight connecting /"

th . . th
neuron in the input layer to theJ  neuron in the hidden layer, 6’1 is the bias of the/ neuron

.th
in the hidden layer. Similarly, Wk}' is the weight connecting the]t neuron in the hidden layer

to the K neuron in the output layer and by is the bias of the K neuron in the output layer.

Optimization of the topology of the ANN is the first crucial step. Of the various architectures
investigated, one hidden layer with ten neurons is considered as the optimum configuration,
which is based upon the regression values obtained. The dataset contains 216 input/output
patterns for fitting. Out of these, 152 samples (70%) are taken for training and 32 samples
(15%) each is used for validation and testing. The training data are the biggest set of data used
by neural network to learn the pattern presented in the data by updating the network

weights. Diagram of neural network used for the present study is shown in Fig. S9.
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Fig. $9. Diagram of neural network used for the present study

The testing data is used for the evaluation of the quality of the network. The final
performance and generalization ability of the trained network are carried out using validation
data. To determine the optimum number of hidden nodes, various topologies are used, where
the number of nodes in the hidden layer is varied from 2 to 12. The error function used in the
present study is Root Mean Square Error (RMSE). Based on the minimum value of RMSE, we
used 10 neurons in the hidden layer for the present study (Fig. $10). The best regression curve

obtained using 10 neurons in the hidden layer are shown in Fig. S11.
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Number of nodes in hidden layer

Fig. S10. The graph showing the relationship between number of neurons and root mean

square error (RMSE)
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Best Validation Performance is 1170.8423 at epoch 8
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Fig. S11. Training, validation, and testing mean square error for the Levenberg — Marquardt

algorithm with the best validation performance of 1170.8423 at epoch 8

The correlation coefficients for training, validation and testing for the data used in the
present ANN model are 0.96063, 0.97251, and 0.96001, respectively are shown in Fig. S12.
The training is stopped after 14 epochs as shown in Fig. $11, where the best performance is
obtained for epoch 8 with a value of 1170.84. For the best fit, the data should fall along a 45
degree line, where the network outputs are equal to the experimental outputs. It evident
from the figure that, almost all the data points fall on this line, except a few data points. Fig.
S$13 shows the error histogram of the present work. The blue bars in the figure represent
training data, the green bars represent validation data and the red bars represent the testing
data. It is observed that, most of the errors fall between -21 and 21. But some of the training
data points are outside this range. These further confirm that, neural network model can

effectively reproduce the experimental results.
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Fig. S12. Training, validation, and testing regression for the Levenberg—Marquardt algorithm
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Fig. S14. Trend of open cell voltage with time of (-0-) MFC - 1, (-A-) MFC - 2 and (-0-) MFC-3.
Error bars represent standard deviation of four independent experiments.
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Fig. S15. CLSM images of anode in different anolyte of (A1 and A2) - MFC - 1, (B1 and B2) -
MFC - 2 and (C1 and C2) - MFC -3
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Fig. S20. Frequency of top 10 species that present in the bacterial community of sugarcane

effluent based Microbial Fuel Cell

Table S6 Reagent cost for the development of anode materials

Reagents Quantity Annual
needed cost (USD)
Fe,TiOs 2glL? 0.01
NaOH 5% 0.04
HCl 3% 0.04
SnCl, 10gL? 0.09
PdCl, 10glL? 1.56
NiSO, 30gL? 0.18
C4He0, 25gL? 0.14
NaPO,H, 25gL? 0.03
Total 2.01
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Table S7 Cost of operating and maintenance other than reagents

Unit cost Annual
Items Remark
(USD) cost (USD)
Costs of routine  Once in a month
7.02 84.28
maintenance (12 times a year)
Costs of water Once in a month
7.02 84.28
quality monitoring (12 times a year)
Total 168.56
Table S8 Reagent cost for catholyte
Reagents Quantity needed Annual Cost (USD)
NaH,PO, 44glL1 0.04
Na,HPO, 34glL? 0.04
Ks[Fe(CN)l 16.6 gL 0.95
Total 1.04
Table S9 Cost of other accessories
Items Cost (USD)
Double - chambered plexiglass (40.5 mL) 11.24
Mild steel (Rs. 660/m?) 0.42
Nafion 117 (10 x 10 cm) 15.11
Gaskets (Rs. 1000/m?2) 0.70
Stainless steel 0.79
Total 28.26
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