Electronic Supplementary Information for

Quasi-2D Co₃O₄ Nanoflakes as Efficient Gas Sensor *versus* Alcohol VOCs

Fedor S. Fedorov, *a+ Maksim A. Solomatin,^{b,c+} Margitta Uhlemann,^d Steffen Oswald,^d Dmitry A. Kolosov,^e Anatolii Morozov,^a Alexey S. Varezhnikov,^b Maksim A. Ivanov,^b Artem K. Grebenko,^{a,f} Martin Sommer,^g Olga E. Glukhova,^{e,h} Albert G. Nasibulin,^{a,i} and Victor V. Sysoev^b

^{*i.*} Aalto University, Aalto 00076, Finland.

⁺these authors contributed equally to this work.

Corresponding author: f.fedorov@skoltech.ru

a. Skolkovo Institute of Science and Technology, Moscow 121205, Russia.

b. Yuri Gagarin State Technical University of Saratov, Saratov 410054, Russia.

^{c.}Saratov Branch of Kotelnikov Institute of Radioengineering and Electronics of RAS, Saratov 410019, Russia.

^{d.} IFW Dresden, Dresden D-01171, Germany.

e. Saratov State University, Saratov 410012, Russia.

^{f.} Moscow Institute of Physics and Technology, Dolgoprudniy 141701, Russia.

^{*g.*} Institute for Microstructure Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.

^{h.} I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.

1. Setup applied for deposition of cobalt oxide gas-sensing layer.

Figure S1. Scheme of the setup used for the deposition of the cobalt oxide layer by electrochemical technique. The numbers indicate: 1 is the multielectroded chip wired at the multi-pin ceramic card (Siegert Co., Switzerland) whose Pt electrodes are employed as a working electrode, 2 is the electrochemical cell filled with the electrolyte, 3 is the graphite counter electrode, 4 is the Ag/AgCl_{sat} the reference electrode, 5 is the potentiostat, 6 is PC, 7 is a heating plate, 8 is the simplified electrical scheme of measurement in a three-electrode arrangement.

2. Experimental setup to study the chemiresistive response of the Co_3O_4 nanoflaked layer-based gas sensor.

Figure S2. The scheme of the experimental setup to study the chemiresistive response of the Co_3O_4 nanoflaked layer-based gas sensor. The numbers denote: 1 is an air compressor, 2 is a dry air generator (PG14L, Peak Scientific, UK), 3 is a gas generator (OVG-4, Owlstone, UK), 4 is a flow controller, 5 is a switching valve, 6 is a low-flow controller, 7 is a water bubbler, 8 is an opening switch, 9 is the chamber with an installed gas-sensor chip, 10 is the electronic measuring setup, 11 is a PC.

3. Field-effect transistor measurements.

The back gate resistance was measured simultaneously to be always at least two orders larger than the source-drain one. We have tested two similar sensors at room temperature conditions. The samples exhibited relatively a high source-drain resistance of an order of 1 GOhm with a clear response to the back gate voltage illustrated in Figure S3. The observed transconductance behavior depicts *p*-type of major charge carriers in the cobalt oxide layer confirmed by the inclination of this curve showing a greater slope in the region of negative back gate voltages. However, the limitations caused by room temperature conditions and device design do not allow us to calculate mobility and concentration values. The $I_{SD}(V_G)$ curves exhibit a mild hysteresis; the curve's slope does not depend on the source-drain voltage in the measured range of [10:40] V which allows one capturing the source-drain current at nA range.

Figure S3. The measurements of cobalt oxide layer transconductance in field-effect transistor (FET) geometry under room temperature. Source-drain current dependence on gate voltage for the sensor element under source-drain voltages to be in the range of [10:40] V (a) and 10 V (b) for sensor elements #1 and #3 correspondingly at the Co_3O_4 nanoflake-based multielectrode chip. Insert at (b) is the cartoon scheme of the measurements.

4. Electrochemical characterization of supporting electrolyte.

Current transient recorded in 0.2 M NaNO₃ supporting electrolyte shows an asymptotic decay over time to be linearized at Cottrell coordinates (Figure S1a, inset). The calculated diffusion coefficient seems to be rather small, though this value is effective due to complicated kinetics of the process. Cyclic voltammetry curves are given in Figure S1b to be taken in a few cycles. We can indicate two cathodic processes at -0.25 V and -1.0 V vs. Ag/AgCl_{sat.} correspondingly. The latter process could be also influenced by hydrogen evolution reaction which, in turn, favors a generation of the base.

Figure S4. Electrochemical characterization of supporting electrolyte, 0.2 M NaNO₃: a) current transient recorded at potential -1V vs. Ag/AgCl_{sat}; b) cyclic voltammetry results, 5 cycles are presented.

5. TEM characterization of single Co_3O_4 nanoflakes

Figure S5. TEM images for as-deposited (cobalt hydroxide) (a,b) and annealed (cobalt oxide) (c,d) samples.

6. XPS deconvolution results for the cobalt oxide layer

We have varied two parameters when we performed annealing of cobalt hydroxide in air, time of treatment and annealing temperature. The evaluated chemical composition is presented in Table S5.

	Co2p (As-deposited)										
Band	Pos	PosSep	B_FWHM	FWHM	Height	%Gauss	Area	%Area	ChiSquared		
1 - Co2p3/2 peak A	780.50	0.00	2.40	2.40	5885	100	15055	30.29	54.02		
2 - Co2p3/2 peak B	782.61	2.11	2.83	2.83	2292	80	7565	15.22			
3- Co2p3/2 satellite	785.90	5.39	5.13	5.13	1652	81	9855	19.83			
4 - Co2p1/2 peak A*	795.98	15.48	3.08	3.08	2100	80	7527	15.15			
5- Co2p1/2 peak B*	797.51	17.00	3.08	3.08	1154	100	3783	7.61			
6 - Co2p1/2 satellite	802.55	22.05	4.72	4.72	1123	90	5913	11.90			

Table S1. XPS results for deconvolution of cobalt core-level spectrum at the as-deposited material

Table S2. XPS results for deconvolution of cobalt core-level spectrum at the material annealed at 300 °C for 4 h

	Co2p (Annealed at 300 °C for 4 hours)										
Band	Pos	PosSep	B_FWHM	FWHM	Height	%Gauss	Area	%Area	ChiSquared		
1 - Co2p3/2 peak A	780.08	0.00	2.55	2.55	10476	92	29529	45.42	52.74		
2 - Co2p3/2 peak B	782.61	2.53	3.08	3.08	3018	100	9894	15.22			
3- Co2p3/2 satellite	788.83	8.75	4.62	4.62	997	100	4905	7.54			
4 - Co2p1/2 peak A*	795.28	15.20	2.64	2.64	4310	80	13288	20.44			
5- Co2p1/2 peak B*	797.51	17.43	2.79	2.79	1367	80	4452	6.85			
6 - Co2p1/2 satellite	804.33	24.25	4.32	4.32	641	100	2943	4.53			

Table S3. XPS results for deconvolution of oxygen core	e-level spectrum at as-deposited material
--	---

O 1s (As-deposited)									
Band	Pos	PosSep	B_FWHM	FWHM	Height	%Gauss	Area	%Area	ChiSquared
1 - low BE	529.93	0.00	2.07	2.07	1256	100	2764	11.31	43.96
2 - higher BE	531.27	1.34	1.90	1.90	10123	88	21686	88.69	

Table S4. XPS results for deconvolution of oxygen core-level spectrum at the material annealed at 300 °C for 4 h

O 1s (Annealed at 300 °C for 4 hours)									
Band	Pos	PosSep	B_FWHM	FWHM	Height	%Gauss	Area	%Area	ChiSquared
1 - low BE	529.63	0.00	1.43	1.43	9468	80	15777	69.50	47.94
2 - higher BE	531.26	1.64	1.90	1.90	3424	100	6925	30.50	

Table S5. The atomic concentration of Co, O, and C estimated out of XPS data for different temperature and time of annealing of the material in comparison with pristine samples

sample	C 1s %	Co 2p %	O 1s %
pristine/as-deposited	8.5	23.1	68.5
25 min. 100°C	40.7	11.3	48.0
50 min. 100°C	39.8	11.2	49.1
250 min. 100°C	37.0	12.1	50.9
25 min. 200°C	32.7	18.7	48.6
50 min. 200°C	33.6	18.0	48.5
250 min. 200°C	31.6	19.9	48.6
25 min. 300°C	31.7	18.2	50.0
50 min. 300°C	31.2	19.1	49.8
250 min. 300°C	27.8	20.0	52.2

7. Study of Co_3O_4 nanoflake layer's impedance at varied a.c. frequencies

Figure S6. Nyquist plot for three Co_3O_4 nanoflake-based sensors at the multielectrode chip with material deposited for 75 s.

Table S6.	Fitted	parameters	of an	equivalent	circuit	for Co ₃ C	4 nanoflak	e-based	sensors	with	material
deposited	l for 75	s.									

	R1, Ohm	err, %	C1, F	err, %	R2, Ohm	err, %	CPE-T	err, %	CPE-P	err, %
#1, 0.1 V	92286	1.41	2.37E-11	1.31	89243	1.75	1.49E-09	10.47	0.83	1.34
#1, 5 V	90322	2.56	2.39E-11	2.3	50004	4.62	8.74E-10	20.45	0.87	2.02
#2, 0.1 V	151240	2.4	2.58E-11	2.12	154340	2.53	9.37E-10	14.84	0.84	1.66
#2, 5 V	140770	3.04	2.63E-11	2.51	126530	3.38	5.25E-10	16.33	0.88	1.61
#3, 0.1 V	147400	2.01	2.54E-11	1.74	101270	2.99	1.05E-09	16.07	0.85	1.69
#3, 5 V	143010	2.52	2.57E-11	2.04	82516	4.26	8.24E-10	20.28	0.87	1.85
#4, 0.1 V	119690	1.5	2.60E-11	1.35	95076	2.05	1.02E-09	11.01	0.86	1.28
#4, 5 V	113790	2.64	2.62E-11	2.21	70387	4.26	6.19E-10	18.04	0.89	1.76

8. Estimation of the detection limit for Co_3O_4 nanoflake-based sensor to alcohol VOCs

Figure S7. The estimation of the detection limit for Co_3O_4 nanoflake-based sensor to alcohol VOCs, methanol, ethanol, isopropanol, and butanol. The extension follows the empirical Freundlich isotherm.

9. Performance of the same Co_3O_4 nanoflake-based sensor towards butanol with the one-year break at dry and humidified air.

Figure S8. The Co_3O_4 -nanoflake based sensor's response to butanol vapors after one year keeping at a shelf in dry air and humid-enriched, 30 rel. %, air.

10. The response of the Co₃O₄ nanoflake-based sensor towards humidity vapors

Figure S9. The Co_3O_4 -nanoflake based sensor's response to humidity vapors added to air: a) the R(t) transient upon exposure to H_2O vapors, 100-10000 ppm concentrations; b) the dependence of the chemiresistive response on the vapor concentration.

10. Literature review in the field of cobalt oxide gas sensors.

We have reviewed the literature devoted to cobalt oxide-based sensors. The results are presented in Table S7. To properly compare various data, we plot a sensitivity coefficient as a ratio of response in percent to the vapor concentration at *ppm* for methanol, ethanol, isopropanol, and butanol vapors (Figure S10).

Figure S10. Comparison of sensitivity coefficient of cobalt oxide-based gas sensors upon exposure to methanol (a), ethanol (b), isopropanol (c) and butanol (d).

Ref. Method, annealing Operation Analyte Sensitivity Sensitivity **Recalculated to** Year LoD Notes temperature (°C) Temperature calculation (min concentration) $(R_{\rm g} - R_{\rm air}) \times 100\% / R_{\rm air}$ (optimal), °C method or $(R_{b}-R_{g}) \times 100\%/R_{g}$, %/ppm Precipitation from cobalt up to 60%/ 1000 ppm n/a 2001 | sl 225 isobutane $(R_{\rm g} - R_{\rm air}) \times$ 0.06 100%/ R_{air} nitrate solution, 800 °C $\Delta R/R_0$ CH_4 4.5/3000 ppm 2003 s2 Reactive electron beam 240 0.15 n/a evaporation of cobalt on 21.7/100 ppm H_2 21.7 "pure" and surface-oxidized silicon wafers respectively 23.6/ 50 ppm CO 47.2 followed by an additional NO_2 -13.1/ 1 ppm 92.9 thermal treatment, 600 °C NH₃ 31/ 50 ppm 62 Reactive radio frequency 2005 s3 200 NO_2 n/a 26%/200 ppb n/a n/a sputtering 40%/ 20 ppm 400 acetone 25%/1 ppm 450 ethanol 22%/ 5 ppm 400 benzene 9%/ 1 ppm 400 ethyl acetate 400 CO the lowest concentration reported - 10 ppm n/a, possibly co-precipitation CO R_g/R_a 3.8/1000 ppm n/a 2006 s4 80 0.28 and hydrothermal methods

Table S7. Literature review on cobalt oxide synthesis and sensing performance (analyte, sensitivity, LoD)

		using cobalt nitrate precursor	100	H ₂		3/ 1000 ppm	0.2		
			90	CH ₄		1.3/ 1000 ppm	0.3		
2006	s5	Two-step method: cobalt acetate reacts with ethylene glycol (EG) in the presence of poly(vinyl pyrrolidone) (PVP) to produce cobalt oxide precursor, and then the precursor is calcinated to produce Co_3O_4 , 500 °C	300	CO ethanol	R _g /R _a	ca. 1.9/1000 ppm	0.0009	n/a	
2009	s6	Obtained at 300 °C from the CoCO ₃ submicrometer crystals after thermal transformation in laboratory air	300	ethanol CO	R _g /R _a	ca. 2.6/1 ppm ca. 1.4/10 ppb	160 4000	n/a	
2009	s7	Template replication method and immobilization using dielectrophoresis process, using SBA-15, cobalt nitrate, 450 °C	200	СО	$(R_{\rm g} - R_{\rm air}) \times$ 100%/ $R_{\rm air}$	4.3%/10 ppm	0.43	n/a	
2009	s8	Pulsed laser deposition	400	CO NO ₂ CH ₄	R/R ₀	ca. 1.2/20 ppm ca. 0.9/5 ppm ca. 1.05/20 ppm	1 2.2 0.25	n/a	
2009	s9	Hydrothermal, using SBA-15, SBA-40b, SBA-100b and cobalt	200	со	$[(R_{\rm g} - R_{\rm air})/R_{\rm air}]$ $\times 100\%$	ca. 10%/ 10 ppm	1	n/a	

		nitrate							
2009	s10	Surfactant-assisted (SDBS)	100	toluene	R _g /R _a	3.1/ 10 ppm	21	n/a	
				acetone		ca. 2.6/ 10 ppm	16	•	
				ethanol		ca. 1.5/ 10 ppm	5	•	
				gasoline	-	ca.1.8/ 10 ppm	8	-	
				propanol	-	ca. 1.75/ 10 ppm	7.5	-	
				butanol	-	ca. 1.75/ 10 ppm	7.5	-	
2010	s11	Chemical Vapor Deposition	200	ethanol	relative	ca. 0.5/100 ppm	0.5	n/a	
		atmospheres at 500 °C.		H ₂	 resistance variation upon exposure to the target gases 	ca. 0.6/1000 ppm	0.6		
2012	s12	Modified template 2 step method, using SBA-15 and cobalt nitrate	350	ethanol		5.1/300 ppm	n/a	n/a	
2014	s13	Thermal decomposition of cobalt nitrate at ZnO-PVP	220	нсон	R _g /R _a	1.05/50 ppb	100	5 ppb/ 50 ppb	
		etching of ZnO.		NO ₂	-	ca. 1.02/100 ppb	20		
				СО	-	ca. 1.03/100 ppb	30	-	
				CO ₂		ca. 1.01/100 ppm	0.01	-	
				ethanol		1.1/100 ppb	100	-	
2014	s14	Synthesized by sacrificial CNTs through SPMIC method using	300	acetone	R _g /R _a	low		n/a	

		Co(NO ₃) ₂ precursor, 650 °C		toluene formaldehyde ammonia	-	low low 1.1/ 10 ppm	1		
2014	s15	Synthesized via a facile template-free hydrothermal method and subsequent thermal decomposition	200	ethanol	R _g /R _a	ca. 3.3/ 5 ppm	46	n/a	
2014	s16	Ethylene glycol (EG)-mediated solvothermal method followed by calcination	180	ethanol	R _g /R _a	2/5 ppm	20	n/a	
2014	s17	Fluoride anion-assisted hydrothermal and controlled annealing route, 350 °C	100	H ₂ CO	R _g /R _a	1.05/10 ppm ca. 3.5/10 ppm	0.5 25	n/a	F-doped
2015	s18	Thermal decomposition of cobalt nitrate by nanocasting, using KIT-6 silica as a structure matrix with further removal of silica matrix by sodium hydroxide, 300 °C	200	СО	R _g /R _a	ca. 1.2/1 ppm	20	n/a	
2015	s19	Purchased or prepared by the solvothermal reaction of stock solutions and subsequent heat treatment (powders, hollow spheres, hollow hierarchical nanostructures), 400 °C	250	p-xylene ethanol p-xylene (275) toluene (275) formaldehyde (275)	R _g /R _a	ca. 170/5 ppm ca. 100/5 ppm ca. 100/ 5 ppm ca. 70/5 ppm ca. 10/5 ppm	3380 1980 1980 1980 1380 180	n/a	in comparison with Pt- modified hierarchical cobalt oxide nanostruct ures

				benzene (275) ethanol (275) ammonia (275) hydrogen (275)		ca. 7/5 ppm ca. 21/5 ppm ca. 4/5 ppm ca. 1/5 ppm	120 400 60 -		
2016	s20	Commercial powder. A ceramic paste of the sensing material powder was prepared by mixing an organic dispersant consisting of 10 wt % ethyl cellulose and 90 wt % terpineol. The weight ratio of the sensing material powder to the organic dispersant was 1:16. The sensor was baked at 400 °C	100 200	NO H ₂	R _g /R _a	1.11/ 50 ppb 1.27/ 25 ppm	220	n/a	in comparison with Ag, Au, Pt modified powders
2016	s21	Solvothermal process using poly(vinylpyrrolidone) to control morphology, 500 °C	170	ethanol xylene ether acetone methanol ethylbenzene toluene benzene	R _g /R _a	2/10 ppm (13.4/ 50 ppm) ca. 1.1/ 50 ppm ca. 2/ 50 ppm ca. 6/ 50 ppm ca. 5/ 50 ppm ca. 2/ 50 ppm ca. 1.5/ 50 ppm ca. 1.5/ 50 ppm	10 (25) 0.2 2 10 8 2 1 -	n/a	

2016	s22	Nanocasting method with ordered mesoporous silica as a hard template (KIT-6, SBA- 15), Co(NO ₃) ₂ ·6H ₂ O, 400 °C	175-200	ethanol NO2 H2 formaldehyde acetone toluene methane	R _g /R _a or R _a /R _g	7/ 100 ppm (concentration dependence is not discussed and hard to consider) ca. 1.5/100 ppm - (ca. 1/100 ppm) ca. 2.5/100 ppm ca. 2.9/100 ppm ca. 2.4/100 ppm ca. 2/ 100 ppm	6 0.5 - 1.5 1.9 1.4 1	n/a	
2016	s23	Transferring cobalt-solution- dipped polystyrene mono- layers onto sensor substrates and subsequent removal of the PS template by heat treatment, 400 °C	200 250 275	ethanol xylene toluene (200) benzene (200) HCHO (200) CO (200)	(R _g -R _a)/R _a	112.9/5 ppm, ca. 70/0.25 ppm ca. 20.7/5 ppm, 1/0.25 ppm ca. 37/5 ppm ca. 25/5 ppm ca. 5/5 ppm ca. 4/5 ppm	2258, 28000 414, 400 740 500 100 80	sub-ppb 0.05 ppm	the exact value of LoD for ethanol is not indicated
2016	s24	Hydrothermal route using cobalt nitrate and NH₄F, 350 °C	RT	NH ₃ H ₂ S CO	R _g /R _a	ca. 1.2/0.2 ppm, 9.5/100 ppm 2.0/100 ppm 1.4/100 ppm	100, 8.5 1 0.4	0.2 ppm	

				H ₂		1.2/100 ppm	0.2		
				C ₂ H ₅ OH		1.5/100 ppm	0.5		
2017	s25	Chemical bath deposition,	200	NO ₂	$(R_{\rm g} - R_{\rm air})$	16%/100 ppm	0.16	n/a	
		ammonium fluoride. 400 °C		Cl ₂	- ^ 100%/ N _{air}	22%/100 ppm	0.22		
				H ₂ S	-	340%/100 ppm, 68%/5	3.4, 13.6		
					-				
				NH ₃		46%/100 ppm	0.46		
				CH₃OH		25%/100 ppm	0.25		
				C ₂ H ₅ OH	-	18%/100 ppm	0.18		
2017	s26	Hydrothermal treatment and	100	ethanol	R _g /R _a	ca. 1.7/1 ppm, 10.4/ ~100	70, 9.4	0.2 ppm	
		a post thermal annealing procedure of cobalt nitrate at carbon foam, 200, 250 and 350 °C			-				
				toluene		ca. 1.1/~100 ppm	0.1		
				NO ₂		ca. 0.9/ about 10 ppm	-1		
				NH ₃		ca. 1.05/ ~100 ppm	0.05		
				methanol	-	ca. 1.6/ ~100 ppm	0.6		
				formaldehyde	-	ca. 1.5/ ~100 ppm	0.5		
				ethylene glycol	-	ca. 4.9/ ~100 ppm	3.9		
				со		ca. 1.06/ about 10 ppm	0.6		
				benzyl alcohol		ca. 2.3/ ~100 ppm	1.3		
				acetone		ca. 1.25/ ~100 ppm	0.25		
2017	s27	Post-thermal conversion of	111	acetone	R _g /R _a	6.8/20 ppm, 16.5/ 100	29, 15.5	n/a	
		$(CO(NH_3)_6)COF_6 H_2O precursor$							

	1								
		after a fluorine-assisted				ppm			
				pentane		4.8/100 ppm	3.8	_	
				ammonia		5.6/100 ppm	4.6	-	
				methanol	-	6.1/100 ppm	5.1	-	
				formaldehyde	-	6.4/100 ppm	5.4	_	
				ethanol	-	8.7/100 ppm	7.7	_	
2017	s28	Precipitation and subsequent	120	со	R _{CO} /R _{air}	ca. 5.1/6.7 ppm	61.2	n/a	different humidity
		thermal decomposition of a carbonate precursor, 500 °C	240	-		ca. 2.4/6.7 ppm	20.9	-	
2017	s29	Solution-combustion synthesis, 350°C (and	100 (25% RH)	acetone	R _g /R _a	6.3/10 ppm (150 °C in humid air)	53	n/a	
		annealing at 300 or 600 °C)		ethane	_	3.7/250 ppm (125 °C in dry air)	1.08		
				СО	_	3.6/100 ppm (100 °C in dry air)	2.6		
2017	s30	Atomic layer deposition	350	ethanol	I _{air} /I _{gas}	ca. 1.25/5 ppm	5	n/a	
2018	s31	Hydrothermal method using	200	ethanol	R _g /R _a	12.6/50 ppm	23.2	n/a	
		500 °C		methanol		ca. 6.2/50 ppm	10.4	-	
				ammonia		ca. 4.3/50 ppm	6.6	_	
				acetone		ca. 8.2/50 ppm	14.4	_	
2018	s32	Hydrothermal method, 300- 500 °C	185	ethanol	R _g /R _a	2.5/1 ppm, ca. 140/100 ppm	150, 139	n/a	
				acetone		ca. 60/ 100 ppm	59	-	

				methanol formaldehyde ammonia nitrogen dioxide	-	ca. 30/100 ppm ca. 55/100 ppm ca. 29/100 ppm ca.2/100 ppm	29 54 28 1	-	
2018	s33	Synthesized using cobalt nitrate precursor at	200	ethanol	R _g /R _a	ca. 1.2/4.3 ppb, ca. 2.5/4.3 ppm	4651.2, 34.9	4.3 ppb	
		methylimidazole. The		H ₂ S		ca. 1.3/4.3 ppm	7.0		
		templates are removed using the organic solvent		NH ₃	-	ca. 1.25/4.3 ppm	5.8	-	
		methylbenzene, 300-450 °C.		CH ₃ OCH ₃	-	ca. 2.0/4.3 ppm	23.3	1	
				НСНО	-	ca. 1.26/4.3 ppm	6.0	-	
				NO ₂		1.25/4.3 ppm	5.8	-	
			170	C ₂ H ₆ S	-	ca. 1.3/250 ppb, 3.15/125 ppm	120, 1.72	-	
				CH ₄ S	-	ca. 1.7/125 ppm	0.6	-	
				CH ₃ COCH ₃	-	ca. 2.1/125 ppm	0.9	-	
				H ₂ S	-	ca. 1.45/125 ppm	0.36	-	
				НСНО	-	ca. 1.5/125 ppm	0.4	-	
				NH ₃	-	ca. 1.7/125 ppm	0.6	-	
2019	s34	Oxygen plasma treatment of a	200	formaldehyde	$(R_{\rm g} - R_{\rm air})$	5%/50 ppb	100	40 ppb	
		(PVA) film followed by heat		H ₂	- × 100%/ R _{air}	ca. 12%/500 ppm	0.024		1
	treatment, 500 °C.		NH ₃	-	ca. 2.5%/1 ppm	2.5	1		

				CO ₂		-	-		
2019	s35	Spray pyrolysis (cobalt acetate	RT	acetone	R _{analyte} /R _{air}	235/50 ppm	468	1 ppm	
		different deposition		ethanol		ca. 5/50 ppm	8		
		temperatures, 473 to 773 K in steps of 100 K		ammonia	-	ca. 4/50 ppm	6		
				xylene	-	ca. 1/50 ppm	-		
				toluene	-	ca. 2/50 ppm	2		
				acetaldehyde	-	ca. 30/50 ppm	58		
2019	s36	Porous Co ₃ O ₄ assembled from nanoparticles was acquired by	100	n-butanol	R _g /R _a	21/100 ppm, ca. 3.5/5 ppm	20, 50	n/a	
		heating Co-MOFs which were prepared using Co ²⁺ ions and 2-methylimidazole at room		butanone	-	ca. 12.5/100 ppm	11.5	-	
				isopropanol		ca.11/100 ppm	10		
				xylene	-	ca. 7.5/100 ppm	6.5		
				ammonia		ca. 2.4/100 ppm	1.4		
				methylbenzene	-	ca. 6.2/100 ppm	5.2		
				acetone	-	ca. 5.2/100 ppm	4.2		
				ethanol	-	ca. 13.5/100 ppm	12.5		
2019	s37	Sol–gel, using precursor Co(CH ₃ COO) ₂ .4H ₂ O, 600 °C	n/a	LPG	R _g /R _a	ca. 1.15/1000 ppm	0.015	n/a	
2019	s38	Wet-chemical method, cobalt acetate, urea. 300 °C	300	ethanol	R _g /R _a	ca. 2/1 ppm, 20.3/100 ppm	100, 19.3	1 ppm	
				formaldehyde		3.2/100 ppm	2.2		

				acetone methane benzene ammonia	-	4.8/100 ppm 1.4/100 ppm 2.1/100 ppm 2.5/100 ppm	3.8 0.4 1.1 1.5	-	
2020	s39	Electrospinning method using ethanol or N,N- dimethylformamide (DMF) solvents mixed with cobalt(II) nitrate and polyvinylpyrrolidone (PVP) applied for the electrospinning, 600 °C.	100	CO NO ₂ C ₂ H ₆ O H ₂	R/R ₀ , R ₀ /R	2.4/5 ppm ca0.8/5 ppm ca. 0.5/5 ppm ca. 0.1/5 ppm	28 n/d n/d n/d	-	
2020	s40	Co ₃ O ₄ microspheres are synthesized via amorphous- coordination polymers based self-template method, 500 °C.	220	xylene toluene benzene acetone ethanol formaldehyde	R _g /R _a	ca. 3/10 ppm ca. 2.9/100 ppm ca. 1.5/100 ppm ca. 3/100 ppm ca.2.9/100 ppm ca.2.8/100 ppm	20 1.9 0.5 2 1.9 1.8	0.35 ppm - -	
2020	s41	Combination of an h- $CoO \rightarrow \beta$ -Co(OH) ₂ phase transition followed by thermal oxidation led to the spontaneous deposition of Co_3O_4 on interdigitated electrodes, 500 °C.	200	acetone ethanol C ₆ H ₆ CH ₂ O	R _g /R _a , R _a /R _g	ca. 1.07/20 ppb, 12.4/1 ppm ca. 6/1 ppm ca. 5/1 ppm ca. 3/1 ppm	350, 1240 500 400 200	13.8 ppb	

				NH ₃ NO ₂		ca. 2/1 ppm ca. 2.1/1 ppm	100	-	
2020	s42	Polyol approach using cobalt (II) acetylacetonate precursor and PVP, 500 °C	170	СО	l _g /l _a	1.57/300 ppm	n/a	n/a	

There are several reviews on Co₃O₄, i.e. by J.M. Xu and J.P. Cheng ⁴³ and by X. Wang et al. ⁴⁴

References:

- s1 S.-D. Choi and B.-K. Min, Sensors Actuators B Chem., 2001, 77, 330–334.
- s2 J. Wöllenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, H. Böttner and I. Eisele, Sensors Actuators B Chem., 2003, 93, 442–
 448.
- s3 E. Comini, G. Faglia, M. Ferroni, G. Sberveglieri and M. Sacerdoti, in SENSORS, 2005 IEEE, 2005, pp. 1323-1325.
- s4 R.-J. Wu, J.-G. Wu, T.-K. Tsai and C.-T. Yeh, Sensors Actuators B Chem., 2006, 120, 104–109.
- s5 A.-M. Cao, J.-S. Hu, H.-P. Liang, W.-G. Song, L.-J. Wan, X.-L. He, X.-G. Gao and S.-H. Xia, J. Phys. Chem. B, 2006, 110, 15858–15863.
- s6 C. C. Li, X. M. Yin, T. H. Wang and H. C. Zeng, Chem. Mater., 2009, 21, 4984–4992.
- s7 C.-Y. Liu, C.-F. Chen and J.-P. Leu, Electrochem. Solid-State Lett., 2009, 12, J40.
- s8 I. Kärkkänen, A. Floren, H. Mändar, T. Avarmaa and R. Jaaniso, Procedia Chem., 2009, 1, 654–657.
- s9 C.-Y. Liu, C.-F. Chen and J.-P. Leu, Sensors Actuators B Chem., 2009, 137, 700–703.
- s10 J. Park, X. Shen and G. Wang, Sensors Actuators B Chem., 2009, 136, 494–498.
- 511 D. Barreca, E. Comini, A. Gasparotto, C. Maccato, A. Pozza, C. Sada, G. Sberveglieri and E. Tondello, J. Nanosci. Nanotechnol., 2010, 10,

8054-8061.

- s12 M. Ma, Z. Pan, L. Guo, J. Li, Z. Wu and S. Yang, Chinese Sci. Bull., 2012, 57, 4019–4023.
- s13 J. Y. Kim, N.-J. Choi, H. J. Park, J. Kim, D.-S. Lee and H. Song, J. Phys. Chem. C, 2014, 118, 25994–26002.
- s14 S. Yi, S. Tian, D. Zeng, K. Xu, X. Peng, H. Wang, S. Zhang and C. Xie, Sensors Actuators B Chem., 2014, 204, 351–359.
- s15 H. Che, A. Liu, J. Hou, X. Zhang, Y. Bai, J. Mu and R. Wang, Mater. Res. Bull., 2014, 59, 69–76.
- s16 H. Che, A. Liu, X. Zhang, J. Hou, J. Mu and H. He, Nano, 2014, 09, 1450071.
- s17 Z. Dou, C. Cao, Y. Chen and W. Song, Chem. Commun., 2014, 50, 14889–14891.
- s18 S. Vetter, S. Haffer, T. Wagner and M. Tiemann, Sensors Actuators B Chem., 2015, 206, 133–138.
- s19 S.-J. Hwang, K.-I. Choi, J.-W. Yoon, Y. C. Kang and J.-H. Lee, Chem. A Eur. J., 2015, 21, 5872–5878.
- s20 T. Akamatsu, T. Itoh, N. Izu and W. Shin, Sensors Mater., 2016, 28, 1191–1201.
- s21 T. Liu, J. Liu, Q. Liu, Y. Sun, X. Jing, H. Zhang and J. Wang, CrystEngComm, 2016, 18, 5728–5735.
- s22 Q. Li, Y. Du, X. Li, G. Lu, W. Wang, Y. Geng, Z. Liang and X. Tian, Sensors Actuators B Chem., 2016, 235, 39–45.
- s23 C.-S. Lee, Z. Dai, S.-Y. Jeong, C.-H. Kwak, B.-Y. Kim, D. H. Kim, H. W. Jang, J.-S. Park and J.-H. Lee, Chem. A Eur. J., 2016, 22, 7102–7107.
- s24 Z. Li, Z. Lin, N. Wang, J. Wang, W. Liu, K. Sun, Y. Q. Fu and Z. Wang, Sensors Actuators B Chem., 2016, 235, 222–231.
- s25 S. T. Navale, C. Liu, P. S. Gaikar, V. B. Patil, R. U. R. Sagar, B. Du, R. S. Mane and F. J. Stadler, Sensors Actuators B Chem., 2017, 245, 524– 532.
- s26 L. Li, C. Zhang, R. Zhang, X. Gao, S. He, M. Liu, X. Li and W. Chen, Sensors Actuators B Chem., 2017, 244, 664–672.
- s27 Z. Zhang, L. Zhu, Z. Wen and Z. Ye, Sensors Actuators B Chem., 2017, 238, 1052–1059.
- S. Vladimirova, V. Krivetskiy, M. Rumyantseva, A. Gaskov, N. Mordvinova, O. Lebedev, M. Martyshov and P. Forsh, Sensors (Switzerland), 2017, 17, 2216.
- s29 K. Vojisavljević, S. Wicker, I. Can, A. Benčan, N. Barsan and B. Malič, Adv. Powder Technol., 2017, 28, 1118–1128.

s30 J. Stehle, A. K. Samarao, U. Krishnamoorthy and O. Ambacher, in TRANSDUCERS 2017 - 19th International Conference on Solid-State Sensors, Actuators and Microsystems, 2017, pp. 1504–1507.

- s31 Q. Zhou and W. Zeng, Phys. E Low-dimensional Syst. Nanostructures, 2018, 95, 121–124.
- s32 D. Han, Y. Ji, F. Gu and Z. Wang, J. Colloid Interface Sci., 2018, 531, 320–330.
- s33 Y. Li, F. Zhou, L. Gao and G. Duan, Sensors Actuators B Chem., 2018, 261, 553–565.
- s34 H. Long, S. Turner, A. Yan, H. Xu, M. Jang, C. Carraro, R. Maboudian and A. Zettl, Sensors Actuators B Chem., 2019, 301, 127067.
- s35 P. Srinivasan, A. J. Kulandaisamy, G. K. Mani, K. J. Babu, K. Tsuchiya and J. B. B. Rayappan, RSC Adv., 2019, 9, 30226–30239.
- s36 M. Wang, Z. Shen, X. Zhao, F. Duanmu, H. Yu and H. Ji, J. Hazard. Mater., 2019, 371, 352–361.
- s37 P. K. Singh, N. Singh, M. Singh, P. Tandon and S. K. Singh, J. Mater. Eng. Perform., 2019, 28, 7592–7601.
- s38 Z. Jin, L.-P. Wang, Y. Zhang, J. Fan, M.-H. Liao, X.-F. Wang and Y. Ding, J. Nanoparticle Res., 2019, 21, 115.
- s39 C. Busacca, A. Donato, M. Lo Faro, A. Malara, G. Neri and S. Trocino, Sensors Actuators B Chem., 2020, 303, 127193.

F. Qu, N. Zhang, D. Liu, S. Zhang, B. Talluri, Y. Zheng, T. Thomas, R. Zhao, S. Ruan and M. Yang, Sensors Actuators B Chem., 2020, 308, 127651.

A. Ma, H. J. Park, J. H. Seo, K. Y. Jang, H. K. Lee, D. Y. Kim, J. E. Lee, K. M. Nam and D.-S. Lee, Sensors Actuators B Chem., 2020, 308, 127698.

- s42 K.-W. Chen, J.-H. Tsai and C.-H. Chen, J. Alloys Compd., 2020, 816, 152524.
- s43 J. M. Xu and J. P. Cheng, J. Alloys Compd., 2016, 686, 753–768.
- s44 X. Wang, W. Tian, T. Zhai, C. Zhi, Y. Bando and D. Golberg, J. Mater. Chem., 2012, 22, 23310–23326.