Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Al-Sc Dual Doped LiGe₂(PO₄)₃ - a NASICON-Type Solid Electrolyte with Improved Ionic Conductivity

Yosef Nikodimos^{a, c}, Meng-Che Tsai^b, Ljalem Hadush Abrha^a, Haile Hisho Weldeyohannis^a, Shuo-Feng Chiu^a, Hailemariam Kassa Bezabh^a, Kassie Nigus Shitaw^a, Fekadu Wubatu Fenta^a, She-Huang Wu^{b, c}, Wei-Nien Su^b, Chun-Chen Yang^{c, d}, Bing-Joe Hwang^{a, e, f}

- ^{a.} Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei city 106, Taiwan
- ^{b.} Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei city 106, Taiwan
- ^{c.} Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- ^{d.} Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- e. National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
- ^{f.} Sustainable Energy Development Center, National Taiwan University of Science and Technology, Taipei city 106, Taiwan

Electronic conductivity measurement: The electronic conductivity of the solid electrolyte pellet was measured by a standard four-point probe technique (KeithLink Technology, Taiwan). An LASGP1 pellet (13 mm diameter and 0.5 mm thickness), pressed using a steel die in a hydraulic press under a pressure of 2500 MPa for 5 minutes, was used for the electronic conductivity measurement. The four-point probe measurement was performed at three different sites on two LASGP1 pellets to get reliable average electronic conductivity.

Defect formation energy: The defect formation energy was calculated for different sites to find the most stable site. The defect formation energy was calculated as follow¹:

$$E_{defect} = E_{pure} - E_{doped} + \sum_{N}^{i} \Delta n_{i} \mu_{i}$$
(1)

where E_{doped} and E_{pure} are the total energy of the supercell with and without the dopants, respectively; Δn_i is the number of atoms of element i added to (or removed from) the supercell to create charge balance the supercell; and μ_i is the chemical potential of element i. This is summed for all elements N, which are added or removed during the doping reaction.

Li ion hopping analysis: The Li migration was investigated from the AIMD simulations by timing of hopping events. A hopping event was identified for each Li⁺ then counted at the time when the ion changes its site. A 2 ps average time for the Li⁺ spatial position is used to prevent from counting a local high-frequency vibration. Furthermore, a statistical analysis for the time of all Li ion hopping events in AIMD simulations was performed. Li ions hopping occurring within 1 ps were grouped as one individual concerted migration event, and the number of Li ions, *n*, is determined for each migration event.

M ₂ Site	E defect (eV)	Site	E defect (eV)
1, 2, 3	2.350	2, 3, 4	1.980
1, 2, 4	1.998	2, 3, 5	1.008
1, 2, 5	1.927	2, 3, 6	1.924
1, 2, 6	1.929	2, 4, 5	1.947
1, 3, 4	1.985	2, 4, 6	1.958
1, 3, 5	2.031	2, 5, 6	1.938
1, 3, 6	1.994	3, 4, 5	2.081
1, 4, 5	1.933	3, 4, 6	2.166
1, 4, 6	1.929	4, 5, 6	1.947
1,5, 6	1.927		

Table S1: Finding the most stable sites of Li in the LASGP1 sample

Table S2: Finding the most stable sites of Al and Sc in the LASGP1 sample

Finding the most stable site of Al			Finding the most stable site of Sc		
Substituted	E defect (eV)	Substituted	$E_{defect}(eV)$	Substituted	E _{defect} (eV)
Ge site		Ge site		Ge site	
$1^{st}, 2^{nd}$	2.360	$4^{\text{th}}, 6^{\text{th}}$	2.362	1 st	2.359
$1^{st}, 3^{rd}$	2.364	$4^{th}, 7^{th}$	2.357	3 rd	2.362
$1^{st}, 4^{th}$	2.358	$4^{th}, 8^{th}$	2.363	4 th	2.360
$1^{st}, 5^{th}$	2.359	$4^{th}, 9^{th}$	2.361	5 th	2.359
1 st , 6 th	2.365	4 th , 10 th	2.365	6 th	2.365
1 st ,7 th	2.365	4 th , 11 th	2.358	7 th	2.361
$1^{st}, 8^{th}$	2.361	$5^{\text{th}}, 6^{\text{th}}$	2.364	8 th	2.358
$1^{st}, 9^{th}$	2.355	5 th ,7 th	2.365	9 th	2.364
1^{st} , 10^{th}	2.359	$5^{th}, 8^{th}$	2.363	10 th	2.359
1 st , 11 th	2.357	$5^{th}, 9^{th}$	2.361	12^{th}	2.363
$2^{nd}, 3^{rd}$	2.364	$5^{\text{th}}, 10^{\text{th}}$	2.355		
$2^{nd}, 4^{th}$	2.356	$5^{th}, 11^{th}$	2.360		
$2^{nd}, 5^{th}$	2.364	$6^{\text{th}}, 7^{\text{th}}$	2.361		
2^{nd} , 6^{th}	2.355	$6^{\text{th}}, 8^{\text{th}}$	2.359		
$2^{nd}, 7^{th}$	2.358	$6^{th}, 9^{th}$	2.365		
$2^{nd}, 8^{th}$	2.356	6 th , 10 th	2.360		
$2^{nd}, 9^{th}$	2.355	6 th , 11 th	2.365		
$2^{nd}, 10^{th}$	2.358	$7^{th}, 8^{th}$	2.360		
$2^{nd}, 11^{th}$	2.363	$7^{th}, 9^{th}$	2.361		
$3^{\rm rd}, 4^{\rm th}$	2.359	$7^{\text{th}}, 10^{\text{th}}$	2.358		
$3^{\rm rd}, 5^{\rm th}$	2.364	$7^{th}, 11^{th}$	2.361		
$3^{\rm rd}, 6^{\rm th}$	2.357	8 th , 9 th	2.358		
$3^{rd}, 7^{th}$	2.363	8 th , 10 th	2.359		
$3^{\rm rd}$, $8^{\rm th}$	2.362	8 th , 11 th	2.359		
$3^{\rm rd}$, $9^{\rm th}$	2.356	9 th , 10 th	2.356		
$3^{\rm rd}, 10^{\rm th}$	2.363	9 th , 11 th	2.361		
$3^{\rm rd}, 11^{\rm th}$	2.361	$10^{\text{th}}, 11^{\text{th}}$	2.363		
4 th , 5 th	2.362				

	Change of lattice parameters relative to DFT values (%)			
Sample	a	С	V	
LAGP	1.77%	2.00%	1.15%	
LASGP1	0.99%	1.15%	0.74%	
LASGP2	2.15%	2.30%	1.48%	
LSGP	2.61%	3.70%	2.09%	

Table S3: Experimental lattice parameter decrement expressed in percentage relative to its

 respective DFT value

Table S4: Intragrain elements analysis using EDX technique for different $Li_{1.5}Al_xSc_yGe_{1.5}(PO_4)_3$ electrolyte samples corresponding to Fig S4 (a-d).

Element	EDX analysis (weight%)					
	LAGP	LASGP1	LASGP2	LSGP		
Al	3.324	2.170	1.118	-		
Sc	-	1.863	3.616	4.496		
Ge	26.494	26.556	25.850	26.044		
Р	22.896	22.645	22.646	22.661		
0	47.286	46.766	46.770	46.799		
Li	-	-	-	-		
Overall	$Li_{1.5}Al_{0.5}Ge_{1.48}(PO_4)_3$	$Li_{1.5}Al_{0.33}Sc_{0.17}Ge_{1.5}(PO_4)_3$	$Li_{1.5}Al_{0.17}Sc_{0.33}Ge_{1.46}(PO_4)_3$	$Li_{1.5}Sc_{0.41}Ge_{1.47}(P_{0.97}O_4)_3$		
formula						

Element	EDX analysis (weight%)			
	LAGP	LASGP2	LSGP	
Al	0.101	0.010	-	
Sc	-	0.109	23.393	
Ge	67.604	67.54	18.897	
Р	1.090	0.941	16.113	
0	31.205	31.4	41.597	
Li	-	-	-	
Result	GeO ₂	GeO ₂	$GeO_2 + 2ScPO_4$	

Table S5: Elements analysis on grain boundaries using EDX technique for different $Li_{1.5}Al_xSc_yGe_{1.5}(PO_4)_3$ electrolyte samples corresponding to Fig S4 (e-g).

Table S6: Diffusivity and activation energy (overall and in different directions) of the $Li_{1+x+y}Al_xSc_yGe_{2-x-y}(PO_4)_3$ electrolytes from AIMD simulations at 25 °C

Sample	Z-direction		XY plane		Total	
Sample	$D \times 10^{-6} (cm^{2}/s)$	$E_a(eV)$	$D \times 10^{-6} (cm^2/s)$	E _a (eV)	$D \times 10^{-6} (cm^{2}/s)$	E _a (eV)
LAGP	1.140±0.006	0.101	0.111±0.003	0.4	0.821±0.003	0.286
LASGP1	1.850 ± 0.003	0.0973	1.040 ± 0.001	0.316	1.550 ± 0.002	0.279
LASGP2	0.341±0.004	0.349	0.0125±0.003	0.502	0.119±0.003	0.420
LSGP	0.219±0.004	0.371	0.0014±0.004	0.557	0.0193±0.004	0.461

Table S7: Estimated channel sizes for each $Li_{1+x+y}Al_xSc_yGe_{2-x-y}(PO_4)_3$ sample after optimization

Sample	Average r(Å)	Volume of LiO ₆ (Å ³)
LAGP	2.229	34.774
LASGP1	2.258	35.349
LASGP2	2.363	36.831
LSGP	2.415	38.226

Li _{1+x+y} Al _x Sc _y Ge _{2-x-y} (PO ₄) ₃	Li concentration near to:	
	Al	Sc
LAGP	2.45	-
LASGP1	1.29	0.88
LASGP2	0.67	2.86
LSGP	-	4.64

 $\label{eq:constraint} \textbf{Table S8: Li-Al and Li-Sc coordination in Li_{1+x+y}Al_xSc_yGe_{2-x-y}(PO_4)_3 \ electrolyte \ samples$

Fig S1: M₁ and M₂ sites of Li atoms in the crystal structure of LiGe₂(PO₄)₃

Fig S2: Rietveld refined XRD patterns of (a) LAGP, (b) LASGP2 and (c) LSGP

Fig S3: FE-SEM images of $Li_{1+x+y}Al_xSc_yGe_{2-x-y}(PO_4)_3$ electrolyte samples (a) LAGP (b) LASGP1 (c) LASGP2 and (d) LSGP

Fig S4: EDX element distribution of $Li_{1+x+y}Al_xSc_yGe_{2-x-y}(PO_4)_3$ electrolyte samples on intragrain zone (a) LAGP, (b) LASGP1, (c) LASGP2, (d) LSGP and grain boundary zone (e) LAGP, (f) LASGP2 (g) LSGP

Fig S5: Arrhenius plot of the diffusion coefficient in the Z direction, in the XY plane and overall: (a) LAGP (b) LASGP1 (c) LASGP2 (d) LSGP

Fig S6. Schematic for the channel size determination for all d-LGP electrolytes.

Fig S7: Crystal structures after relaxation: (a) LAGP, (b) LASGP1, (c) LASGP2 and (d) LSGP

Fig S8: Li ions hopping event analysis in $\text{Li}_{1.5}\text{Al}_{x}\text{Sc}_{y}\text{Ge}_{1.5}(\text{PO}_{4})_{3}$ electrolyte samples: (a) Plot of cumulative hopping events versus time and (b) histograms for the number of Li ions, *n*, hopping from AIMD simulations at 900 K

Fig S9: Nyquist plots measured in the frequency range of $10^{-2} - 10^{6}$ Hz and temperature range of 25–55 °C (a) LAGP, (b) LASGP2, (c) LSGP

Fig S10: Ionic conductivity variation of $Li_{1+x+y}Al_xSc_yGe_{2-x-y}(PO_4)_3$ electrolyte samples with temperature, as well as their fitting curves

Fig S11: Current-time curve obtained from chronoamperometry at a DC polarization of 0.01V for Li/LASGP1/Li symmetric cell. inset: Nyquist profiles of the cell before and after polarization

Fig S12: Li^+ diffusivity and Li-Sc coordination in $Li_{1+x+y}Al_xSc_yGe_{2-x-y}(PO_4)_3$ electrolyte samples with respect to Sc amount.

Reference

L. J. Miara, W. D. Richards, Y. E. Wang and G. Ceder, *Chem. Mater.*, 2015, 27, 4040-4047.