Supporting Information

A novel polyoxovanadate-based Co–MOF: highly efficient and selective oxidation of mustard gas simulant by two-site synergetic catalysis

Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China *E-mail: liusx@nenu.edu.cn

Table of Contents

1. Crystallographic Data and Structure Refinements	S3
2. BVS Results	S4
3. XPS Spectra of V-Co-MOF and V-Ni-MOF	S4
4. PXRD Patterns of V-Co-MOF and V-Ni-MOF	S5
5. FTIR Spectra of V-Co-MOF and V-Ni-MOF	S5
6. TGA Curves of V-Co-MOF and V-Ni-MOF	S6
7. BET Analysis of V-Co-MOF and V-Ni-MOF	S6
8. Mass Spectrum of CEESO	S7
9. ¹ H-NMR Spectra of CEES Oxidation Process with V-Co-MOF as Catalyst	S7
10. The influence of the Quantity of Catalyst and Oxidant for CEES Oxidation	S8
11. Kinetic Analysis of CEES Oxidation for V-Co-MOF and V-Ni-MOF	S8
12. PXRD Patterns of NaK {V ₂ O ₆ }	S9
13. FTIR Spectra of CEES Molecules Absorbed on V-Co-MOF and V-Ni-MOF	S9
14. XPS Spectra of Co ²⁺ in V-Co-MOF-A and Ni ²⁺ in V-Ni-MOF-A	.S10
15. FTIR Spectra and Raman Spectra of V-Co-MOF-treating with 30% H ₂ O ₂	.S10
16. Comparison of CEES Catalytic Oxidation by Different Catalysts.	.S11
17. References.	.S12

1. Crystallographic Data and Structure Refinements

MOF

Name	V-Co-MOF	V-Ni-MOF
Empirical formula	$C_{12}H_{10}CoN_4O_6V_2$	$C_{14}H_{22}N_6O_8V_2Ni$
Formula weight	467.05	562.96
Temperature (K)	298	298
Wave length (Å)	0.71073	0.71073
Crystal system	monoclinic	monoclinic
Space group	C2/c	$P2_1/n$
a (Å)	15.592(5)	9.3037(4)
b (Å)	5.5370(17)	24.5253(9)
c (Å)	19.668(6)	9.8451(3)
α (deg)	90	90
β (deg)	111.991(6)	112.9020(10)
γ (deg)	90	90
Volume (Å ³)	1574.4(8)	2069.33(13)
Z, D_{calc} (Mg/m ³)	4, 1.970	4, 1.807
Absorption coefficient (mm ⁻¹)	2.243	1.841
F (000)	924.0	1144.0
Crystal size (mm ³)	$0.25\times0.23\times0.22$	0.21 imes 0.2 imes 0.19
θ range (deg)	4.466 to 50.178	4.788 to 50.122
index range (deg)	$-18 \le h \le 11, -6 \le k \le 6, -23 \le l \le 23$	$-11 \le h \le 11, -29 \le k \le 29, -11 \le l \le 11$
Reflections collected / unique	4372 / 1401 [Rint = 0.0289]	19036 / 3660 [Rint = 0.0306]
Data / restraints / parameters	1401 / 0 / 114	3660 / 0 / 286
Goodness-of-fit on F ²	1.044	1.105
R_1 , w R_2 ($I > 2\sigma(I)$)	0.0383, 0.0824	0.0335, 0.0863
R_1 , w R_2 (all data)	0.0497, 0.0876	0.0372, = 0.0884
Largest diff. peak and hole (e Å-3)	0.35, -0.43	0.41, -0.68

Table S1. Crystallographic data and structure refinements of V-Co-MOF and V-Ni-

$R_{1} = \sum F_{o} - F_{c} / \sum F_{o} . wR_{2} = \left[\sum [w (F_{o}^{2} - F_{c}^{2})^{2}\right] / \sum [w (F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w (F_{o}^{2} - F_{c}^{2} - F_{c}^{2} - F_{c}^{2})^{2}] / \sum [w (F_{o}^{2} - F_{c}^{2} - F_{c}^{2} - F_{c}^{2} - F_{c}^{2})^{2}] / \sum [w (F_{o}^{2} - F_{c}^{2} - F_{c}^{2} - F_{c}^{2} - F_{c}^{2})^{2}] / \sum [w (F_{o}^{2} - F_{c}^{2} - F_{c}^{2} - F_{c}^{2} - F_{c}^{2})^{2}] / \sum [w (F_{o}^{2} - F_{c}^{2} - F_{c}^{2} - F_{c}^{2} - F_{c}^{2} - F_{c}^{2} - F_{c}^{2} - F_{c}^{2}] / \sum [w (F_{o}^{2} - F_{c}^{2} - F_{c}^{2$	$^{2})^{2}]]^{1/2}$
---	---------------------

2. BVS Results

Table S2. BVS results for the vanadium ions, cobalt ion and nickel ions in V-Co-MOF

Metal site	BVS cacl.	Assigned O.S.		
V-Co-MOF				
V1	5.363	5		
Co1	2.234	2		
V-Ni-MOF				
V1	5.218	5		
V2	5.234	5		
Ni1	2.109	2		

3. XPS Spectra of V-Co-MOF and V-Ni-MOF

Figure S1. (a, b) XPS spectra of V ions and Co ions in V-Co-MOF. (c, d) XPS spectra of V ions and Ni ions in V-Ni-MOF.

4. PXRD Patterns of V-Co-MOF and V-Ni-MOF

Figure S2. PXRD patterns of V-Co-MOF and V-Ni-MOF.

Figure S3. (a) The FTIR spectrum of V-Co-MOF. (b) The FTIR spectrum of V-Ni-MOF.

Figure S4. (a) The TGA curve of V-Co-MOF. (b) The TGA curve of V-Ni-MOF.

7. BET Analysis of V-Co-MOF and V-Ni-MOF

Figure S5. BET analysis of V-Co-MOF (a, b) and V-Ni-MOF (c, d). The N₂ absorption / desorption isotherms were measured at 77K ($P_0 = 101$ kPa).

8. Mass Spectrum of CEESO

Figure S6. Mass spectrum of CEESO. The mass spectrum was tested after catalytic reaction of CEES.

9. ¹H-NMR Spectra of CEES Oxidation Process with V-Co-MOF as Catalyst.

Figure S7. ¹H-NMR spectra of CEES oxidation process with V-Co-MOF as catalyst. Reaction condition: CEES (0.25 mmol), 30% H₂O₂ (0.30mmol), V-Co-MOF (0.025mmol), and EtOH (2.0 mL) at 25 °C for 10 min and analyzed by ¹H-NMR (CDCl₃).

10. The influence of the Quantity of Catalyst and Oxidant for CEES Oxidation.

Figure S8. (a) The influence of catalyst amount for the oxidation of CEES with V-Co-MOF as catalyst. (b) The influence of oxidant amount for the oxidation of CEES with V-Co-MOF as catalyst.

Figure S9. The kinetic analysis of CEES oxidation for V-Co-MOF (a) and V-Ni-MOF

(b) $(\ln(C_t/C_0)$ versus reaction time).

12. PXRD Patterns of NaK{V₂O₆}

Figure S10. The PXRD patterns of NaK $\{V_2O_6\}$.

13. FTIR Spectra of CEES Molecules Absorbed on V-Co-MOF and V-Ni-MOF

Figure S11. The FTIR spectra of V-Co-MOF (a) and V-Ni-MOF (b) before and after absorbing CEES, and the FTIR spectrum of CEES. Note: A = After absorbing CEES. The treatment procedure of the samples (V-Co-MOF-A and V-Ni-MOF-A) before testing FTIR spectra: CEES (0.25 mmol), V-Co-MOF or V-Ni-MOF (0.025 mmol) and EtOH (2 mL) were placed in 10mL sealed vial and stirred at 25 °C for 60 min. Then we removed the external CEES by centrifugation and the obtained solids were washed with fresh EtOH. Finally the solids were dried at room temperature and named as V-Co-MOF-A or V-Ni-MOF-A.

14. XPS Spectra of Co²⁺ in V-Co-MOF-A and Ni²⁺ in V-Ni-MOF-A

Figure S12. XPS spectra of Co^{2+} in V-Co-MOF-A (a) and Ni²⁺ in V-Ni-MOF-A (b).

Note: A = After absorbing CEES.

Figure S13. (a) FTIR spectra of V-Co-MOF before (black line) and after (red line) treating with 30% H₂O₂. (b) Raman spectra of V-Co-MOF before (black line) and after (red line) treating with 30% H₂O₂.

16. Comparison of CEES Catalytic Oxidation by Different Catalysts

catalysts.

Entry	Catalyst	Time (min)	Oxidant	Т	Conv.(%)	Sulfoxide selectivity	Refs.
				(°C)		(%)	
1	V-Co-MOF	10	H_2O_2	25	100	100	This work
2	V-Ni-MOF	10	H_2O_2	25	47.5	100	This work
3	PNb ₁₂ V ^V V ₄ ^{IV}	60	H_2O_2	25	100	67	[1]
4	V ₆ O ₁₁ (OMe) ₈	240	H_2O_2	25	100	85	[2]
5	TBA -poly V_6	30	H_2O_2	25	99	100	[3]
6	H ₅ PV ₂ Mo ₁₀ O ₄₀ @MIL-101	120	O ₂	25	97.4	100	[4]
7	PW ₁₂ @NU-1000	20	H_2O_2	45	98	57	[5]
8	PW ₁₂ @NU-1000-scCO ₂	5	H_2O_2	45	100	90	[6]
9	PV ₂ Mo ₁₀ @ NU-1000	45	O ₂	70	100	<100	[7]

Table S3. Comparison of CEES catalytic oxidation by different POVs and POMOFs

17. References

1 J. Dong, J. Hu, Y. Chi, Z. Lin, B. Zou, S. Yang, C. L. Hill and C. Hu, *Angew. Chem. Int. Ed.*, 2017, 56, 4473-4477.

2 J.-K. Li, J. Dong, C.-P. Wei, S. Yang, Y.-N. Chi, Y.-Q. Xu and C.-W. Hu, *Inorg. Chem.*, 2017, **56**, 5748-5756.

K. P. Sullivan, W. A. Neiwert, H. Zeng, A. K. Mehta, Q. Yin, D. A. Hillesheim, S. Vivek, P. Yin, D.
L. Collins-Wildman, E. R. Weeks, T. Liu and C. L. Hill, *Chem. Commun.*, 2017, 53, 11480-11483.

4 Y. Li, Q. Gao, L. Zhang, Y. Zhou, Y. Zhong, Y. Ying, M. Zhang, C. Huang and Y. a. Wang, *Dalton Trans.*, 2018, **47**, 6394-6403.

5 C. T. Buru, P. Li, B. L. Mehdi, A. Dohnalkova, A. E. Platero-Prats, N. D. Browning, K. W. Chapman, J. T. Hupp and O. K. Farha, *Chem. Mater.*, 2017, **29**, 5174-5181.

6 C. T. Buru, A. E. Platero-Prats, D. G. Chica, M. G. Kanatzidis, K. W. Chapman and O. K. Farha, J. *Mater. Chem. A*, 2018, **6**, 7389-7394.

7 C. T. Buru, M. C. Wasson and O. K. Farha, ACS Appl. Nano Mater., 2019, 3, 658-664.