Electronic Supplementary Information (ESI)

Thermoelectrochemical Formation of Fe/Fe₃C@Hollow N-Doped Carbon in Molten Salts for Enhanced Catalysis

Wei Weng, ac Jing Zhou, b Dong Gub and Wei Xiaoa*

- a. College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 (P. R. China)
- b. The Institute of Advanced Studies, Wuhan University, Wuhan 430072 (P. R. China)
- c. School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072 (P. R. China)
- * Email: <u>00030042@whu.edu.cn</u> Homepage: http://wxiao.whu.edu.cn/

Experimental Details

Materials: NaCl (anhydrous, 99% purity) and CaCl₂ (anhydrous, 99% purity) were purchased from Shanghai Titan Scientific Co. Ltd. Tris (hydroxymethyl) aminomethane (Tris, >99.99%) was obtained from the Shanghai Regal Biology Technology Co. Ltd. Dopamine hydrochloride (>99%) was provided by the Hefei Bomei Biotechnology. Co. Ltd. FeCl₃ (Analytical reagent, 99.9% in purity) was purchased from the Aladdin (Shanghai, China). H_2O_2 (30 wt%) was purchased from Sinopharm Chemical Reagent Co., Ltd. Sodium phosphate monobasic (NaH₂PO₄, >99.0 %), commercial Pt/C (20 wt% Pt), and 5 wt% Nafion solution were purchased from Sigma-Aldrich.

*Preparation of Fe*₂*O*₃@*PDA:* The preparation of Fe₂O₃ was carried out according to a previous report.¹ 2.7 g FeCl₃ was dissolved in 500 mL of deionized (DI) water, followed by adding 27 mg NaH₂PO₄. After stirring for 1 h, the mixture was sealed in a Teflonlined stainless-steel autoclave, followed by heating at 105 °C for 48 h. Then, Fe₂O₃ nanospindles (Fig. S1a and c) were obtained after centrifugation in DI water and ethanol for several times and vacuum-drying at 60 °C overnight. 200 mg Fe₂O₃ nanospindles were added into 200 mL (10 mM) Tris buffer solution, followed by addition of 200 mg dopamine hydrochloride. After stirring for 20 h at room temperature, the Fe₂O₃@PDA powders (Fig. S1b and d) were collected by centrifugation in DI water and ethanol for several times and vacuum-drying at 60 °C for 00 mc (Fig. S1b and d) were collected by centrifugation in DI water and ethanol for several times and vacuum-drying at 60 °C for 00 mc mc methanol for several times and vacuum-drying for 20 h at room temperature, the Fe₂O₃@PDA powders (Fig. S1b and d) were collected by centrifugation in DI water and ethanol for several times and vacuum-drying at 60 °C for overnight.^{2, 3}

Reaction mechanism investigation: Pyrolysis of Fe_2O_3 @PDA in the inert Argon atmosphere is conducted at 600 °C for 2 h (denoted as 0 V, 2 h in air). For comparison, pyrolysis of Fe_2O_3 @PDA is also conducted in the NaCl-CaCl₂ molten salt at 600 °C for 2 h (denoted as 0 V, 2 h in molten salt). To better understand the reaction mechanism, the above-mentioned pyrolysis products were only leached in DI water for 12 h to remain all iron intermediates, followed by vacuum-drying at 60 °C overnight. Similarly, products obtained by electrochemical treatment of Fe_2O_3 @PDA in the NaCl-CaCl₂ molten salt at 2.1 V for 2 h are also leached in DI water for 12 h to remain all iron species in some cases, followed by vacuum-drying at 60 °C overnight (denoted as 2.1 V, 2 h in molten salt). The gaseous products during the pyrolysis of Fe_2O_3 @PDA in Ar atmosphere were analyzed by a gas chromatograph (GC-2014C plus, Shimadzu, Japan) equipped with a thermal conductivity detector (TCD), two flame ionization detectors (FID-1 and FID-2) and a chromatographic column (Rtx-1).

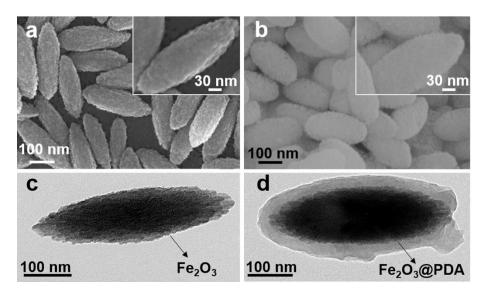
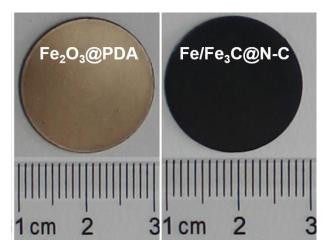



Fig. S1 SEM (a,b) and TEM (c,d) images for Fe₂O₃ (a,c) and Fe₂O₃@PDA (b,d).

Fig. S2 Optical images of the Fe₂O₃@PDA pellet before electrolysis (left) and the obtained Fe/Fe₃C@N-C pellets after electrolysis (right).

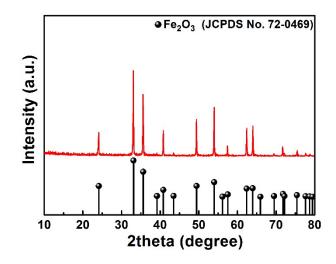


Fig. S3 XRD pattern of the Fe₂O₃@PDA.

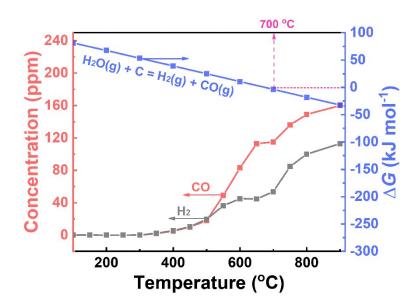


Fig. S4 Concentration variations of H_2 and CO during the pyrolysis process of PDA in Ar atmosphere (5 °C min⁻¹) as well as the Gibbs free energy changes (calculated by HSC 6.1) of reaction $H_2O(g) + C = H_2(g) + CO(g)$.

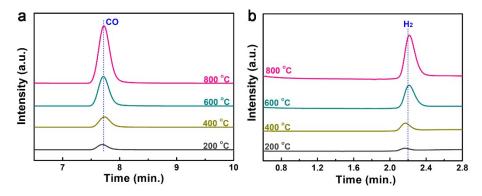
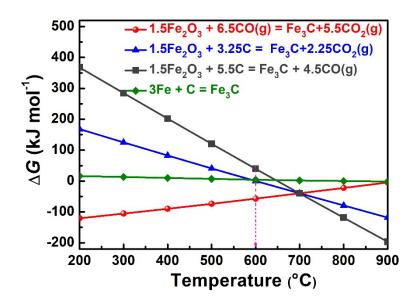



Fig. S5 GC spectra of the outlet gas during the pyrolysis process of PDA in Ar atmosphere: (a) CO; (b) H_2 . Both the H_2 and CO are detected by a thermal conductivity detector (TCD).

Fig. S6 Gibbs free energy changes of possible reactions for Fe₃C formation (calculated by HSC 6.1 software).

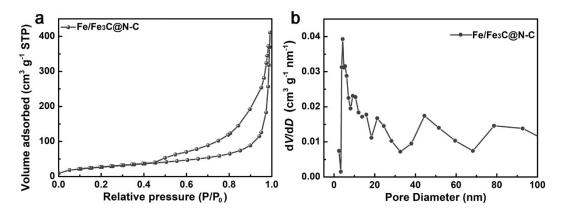


Fig. S7 Nitrogen adsorption-desorption isotherm (a) and pore size distribution (b).

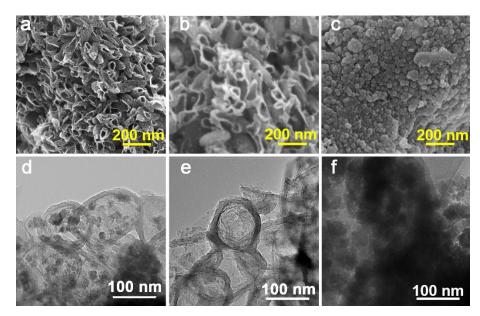
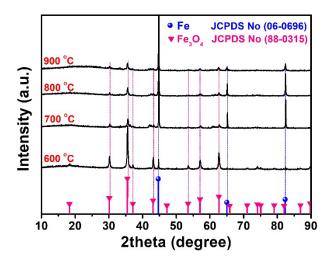
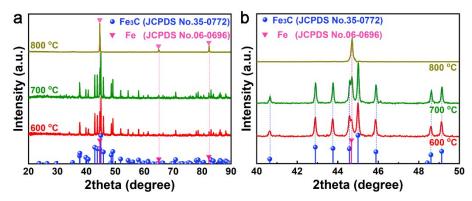




Fig. S8 SEM (a-c) and TEM (d-f) images for Fe/Fe₃C@N-C (a,d), N-C (b,e), and Fe/Fe₃C (c,f).

Fig. S9 XRD patterns for the pyrolysis product of Fe_2O_3 @PDA in Ar atmosphere at different temperatures. Reaction time: 2 h. The obtained products were only leached in deionized water for 12 h to remain all iron intermediates, followed by vacuum-drying at 60 °C overnight.

Fig. S10 XRD patterns of the products obtained by electrochemical treatments of Fe_2O_3 @PDA in NaCl-CaCl₂ molten salt at 2.1 V for 2 h at different temperatures. The products were only leached in deionized water for 12 h to remain all iron species, followed by vacuum-drying at 60 °C overnight. The 2theta degree presented is in the range of 20-90° for (a) and 40-50° for (b).

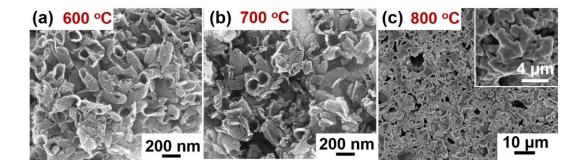
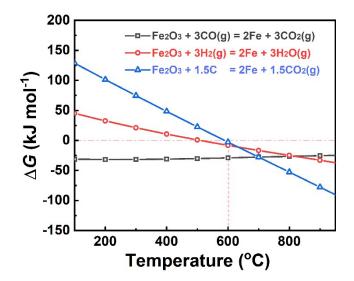
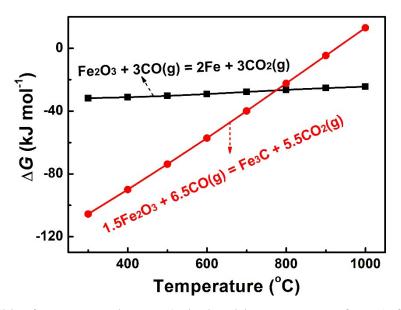
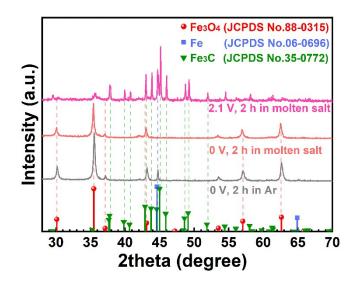
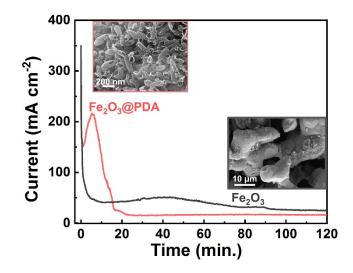
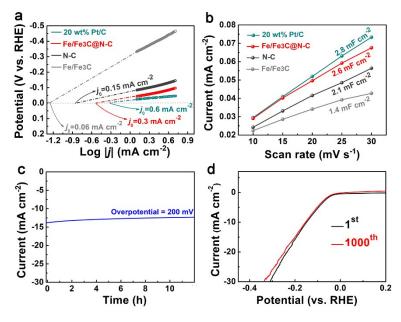




Fig. S11 SEM images for the products obtained at different temperatures from electrochemical treatment of Fe_2O_3 @PDA pellets in NaCl-CaCl₂ molten salt at 2.1 V for 2 h. (a) 600 °C; (b) 700 °C; (c) 800 °C.

Fig. S12 Gibbs free energy changes (calculated by HSC 6.1 software) of related reactions for Fe formation.

Fig. S13 Gibbs free energy changes (calculated by HSC 6.1 software) for reactions between CO and Fe_2O_3 .

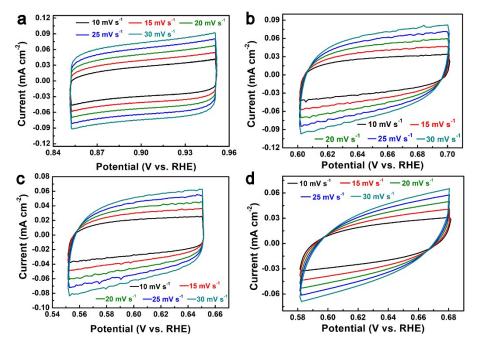
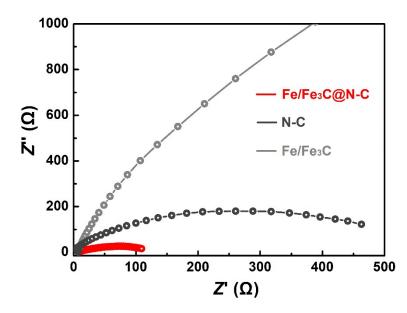
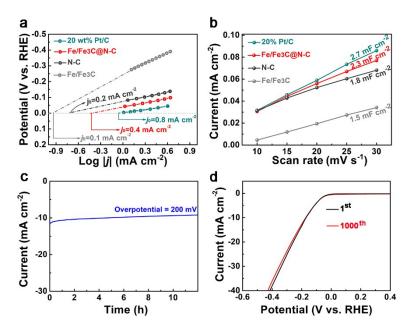
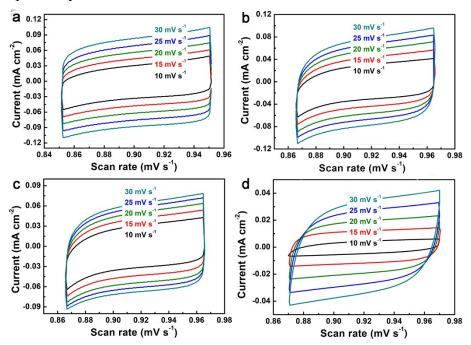

Fig. S14 XRD patterns of products obtained by treatment of Fe_2O_3 @PDA at 600 °C in three different ways. Products were only leached in deionized water, without washing in acid solution. (0 V means that no voltage is exerted.)

Fig. S15 Current-time curves for electrolysis of Fe_2O_3 @PDA and Fe_2O_3 spindles. Insets are the SEM images of products obtained from the electrolysis of Fe_2O_3 @PDA (left) and Fe_2O_3 (right) spindles. Electrolysis voltage: 2.1 V. Electrolysis time: 120 min.

Fig. S16 HER performance of Fe/Fe₃C@N-C measured in 0.5 M H_2SO_4 solution: (a) calculation of exchange current density, (b) linear relationship between the capacitance current density and the scan rate, (c) long-term stability test performed under a constant overpotential of 200 mV, and (d) LSV curves of the first and 1000th repeated cycles at 10 mV s⁻¹.

Fig. S17 CV curves of the 20 wt% Pt/C (a), Fe/Fe₃C@N-C (b), N-C (c), and Fe/Fe₃C (d) in non-Faraday regions at different scan rate in 0.5 M H₂SO₄ solution.

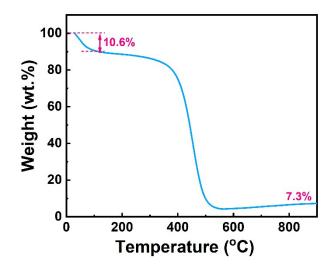

Fig. S18 Nyquist plots recorded at a HER overpotential of 150 mV in 0.5 M H₂SO₄.

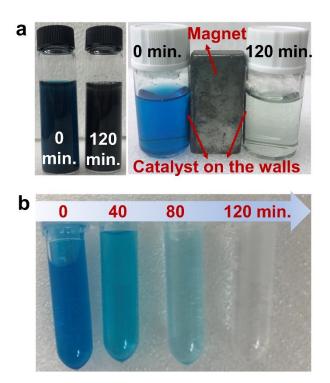
Fig. S19 Hydrogen evolution reaction performance of electrocatalysts measured in 1 M KOH solution: (a) calculation of exchange current density, (b) linear relationship between the capacitance current density and the scan rate, (c) long-term stability test performed under constant overpotential of 200 mV, and (d) LSV curves of the first and 1000th repeated cycles at 10 mV s⁻¹.

Fig. S20 CV curves of the 20 wt% Pt/C (a), Fe/Fe₃C@N-C (b), N-C (c), and Fe/Fe₃C (d) in non-Faraday regions at different scan rate in 1 M KOH solution.

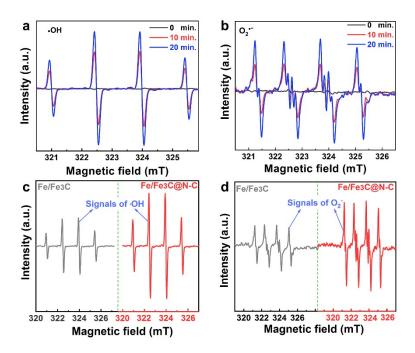
Fig. S21 TGA curve of Fe/Fe₃C@N-C (obtained at 600 °C) with a heating rate of 5 °C min⁻¹ in air.

As shown in Figure S21, the weight loss (10.6 wt%) before 100 °C is attributed to the adsorbed water. Both the combustion of carbon and oxidation of Fe/Fe₃C species exist in the temperature range of 300~550 °C, leading to an obvious weight loss. Only oxidation of the remaining Fe/Fe₃C particles occurs at temperatures exceeding 550 °C, resulting a slight weight increase. The weight keeps almost constant when the temperature is higher than 800 °C, meaning that all carbon is depleted by combustion and all Fe/Fe₃C particles are converted to Fe₂O₃ by oxidation. Therefore, the 7.3 wt% mass in the final stage reflects the weight ratio of Fe₂O₃, which means that the mass ratio of Fe atom in Fe/Fe₃C@N-C is 5.7 wt%. The mass loading on the RDE electrode (5 mm in diameter) is 0.45 mg cm⁻², meaning that the number of Fe atom on the electrode is 9×10^{-8} mol. The N content is determined to be 0.8 wt% by XPS survey spectrum. Assuming that Fe/Fe₃C@N-C is calculated to be 1.3 at% by the following equation:

Fe_(at.%) =
$$\frac{\frac{m_{Fe}}{M_{Fe}}}{\frac{m_{Fe}}{M_{Fe}} + \frac{m_{N}}{M_{N}} + \frac{m_{C}}{M_{C}}} = \frac{\frac{5.7}{56}}{\frac{5.7}{56} + \frac{0.8}{14} + \frac{93.5}{12}} = 1.3 \text{ at}\%$$


100

Considering the Fe atom is the center of active sites [11-13], then the Turnover Frequency


(TOF, the amount of H_2 per mol Fe per second) is calculated by the following equation:

$$TOF = \frac{j * A}{2 * F * m}$$

where *j* (A cm⁻²) is the current density at a specific overpotential (here the selected overpotential is 300 mV), A is the electrode area of RDE (0.196 cm²), 2 (mol) represents the electrons consumed for generating one mole of H₂, *m* is the number of Fe atoms (9×10⁻⁸ mol). *F* is the Faraday's constant (96485 C mol⁻¹).

Fig. S22 (a) Optical images for the Fe/Fe₃C@N-C catalysts in the MB-containing solutions after degradation for 0 or 120 min. (The left two bottles: without a magnet; The right two bottles: with a magnet). (b) Optical images of the MB-containing solutions after degradation by Fe/Fe₃C@N-C for different times.

Fig. S23 The time-dependent variation of electronspin resonance (ESR) signals of (a) hydroxyl radical (\cdot OH) and (b) superoxide (O_2^{-}) radical detected during degradation of MB by Fe/Fe₃C@N-C. Comparison of \cdot OH (c) and O_2^{-} (d) signals detected by ESR during degradation of MB by Fe/Fe₃C and Fe/Fe₃C@N-C.

Catalysts	Electrolyte	$\eta_{@10 \text{ mA cm}}^{-2}$ (mV)	Tafel slope (mV dec ⁻¹)	j_0 (mA cm ⁻²)	Refs.
Fe/Fe ₃ C@N-C	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	147	78	0.3	This work
	1 M KOH	153	91	0.4	
Fe ₃ C-Co/N-C	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	298	100.3	-	[4]
	1 M KOH	238	108.8	-	
$(Fe_{0.75}Co_{0.25})C_2$	1 M KOH	174	107	-	[5]
Fe-N-C	0.5 M H ₂ SO ₄	130	89	0.027	[6]
Fe ₃ C encased in graphene nanoribbons	0.5 M H ₂ SO ₄	49	46	-	[7]
Co ₂ FeC _x N _y	0.5 M H ₂ SO ₄	180	90	-	[8]
Fe _x P in N-P codoped carbon	0.5 M H ₂ SO ₄	227	81	0.023	[9]
FeCo in N-doped carbon nanotube	0.5 M H ₂ SO ₄	284	72	-	[10]
FeCo in N-doped graphene	0.5 M H ₂ SO ₄	262	74	-	[11]
Ni-doped FeP/carbon hollow nanorods	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	72	54	0.723	[12]
	1 M KOH	95	72	-	
FeP/carbon hollow nanorods	0.5 M H ₂ SO ₄	157	127	0.594	[12]
Mo ₂ C nanobelts	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	140	51.3	0.021	[13]
	1 M KOH	110	49.7	0.056	
MoC-Mo ₂ C in porous N-doped carbon	1 M KOH	121	60	0.15	[14]
WC-W ₂ C in porous N-doped carbon	1 M KOH	101	90	0.74	[14]
N-doped Mo ₂ C	0.5 M H ₂ SO ₄	177.5	59.6	0.010	[15]
S-vacancy MoS ₂	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	194	73	-	[16]

 Table S1. Comparison of HER performances between recently reported literatures and this work

Supplementary References

- 1 C. Zeng, W. Weng, T. Lv and W. Xiao, *ACS Appl. Mater. Interfaces*, **2018**, 10, 30470-30478.
- 2 W. Weng, C. Zeng and W. Xiao, ACS Appl. Mater. Interfaces, 2019, 11, 9156-9163.
- 3 X. Xin, H. Qin, H. P. Cong and S. H. Yu, *Langmuir*, **2018**, 34, 4952-4961.
- 4 C. C. Yang, S. F. Zai, Y. T. Zhou, L. Du and Q. Jiang, *Adv. Funct. Mater.*, **2019**, 29, 1901949.
- 5 S. Li, P. Ren, C. Yang, X. Liu, Z. Yin, W. Li, H. Yang, J. Li, X. Wang, Y. Wang, R. Cao, L. Lin, S. Yao, X. Wen and D. Ma, *Sci. Bull.*, **2018**, 63, 1358-1363.
- 6 X. Zeng, J. Shui, X. Liu, Q. Liu, Y. Li, J. Shang, L. Zheng and R. Yu, *Adv. Energy Mater.*, **2018**, 8, 1701345.
- 7 X. Fan, Z. Peng, R. Ye, H. Zhou and X. Guo, ACS Nano, 2015, 9, 7407-7418.
- 8 P. Liu, Y. Liu, J. Jiang, S. Ashraf, X. Wu, G. Han, J. Gao, K. Zhang and B. Li, *ACS Sustai. Chem. Eng.*, **2019**, *7*, 8744-8754.
- 9 Y. Cheng, J. Guo, Y. Huang, Z. Liao and Z. Xiang, *Nano Energy*, 2017, 35, 115-120.
- 10 J. Deng, P. Ren, D. Deng, L. Yu, F. Yang and X. Bao, *Energy Environ. Sci.*, **2014**, 7, 1919-1923.
- 11 Y. Yang, Z. Lun, G. Xia, F. Zheng, M. He and Q. Chen, *Energy Environ. Sci.*, **2015**, 8, 3563-3571.
- 12 X. F. Lu, L. Yu and X. W. Lou, Sci. Adv., 2019, 5, eaav6009.
- 13 S. Jing, L. Zhang, L. Luo, J. Lu, S. Yin, P. K. Shen and P. Tsiakaras, *Appl. Catal. B-Environ.*, **2018**, 224, 533-540.
- 14 X. F. Lu, L. Yu, J. Zhang and X. W. D. Lou, *Adv. Mater.*, **2019**, 31, e1900699.
- 15 R. Jiang, J. Fan, L. Hu, Y. Dou, X. Mao and D. Wang, *Electrochim. Acta*, **2018**, 261, 578-587.
- 16 W. Wu, C. Niu, C. Wei, Y. Jia, C. Li and Q. Xu, *Angew. Chem. Int. Edit.*, **2019**, 58, 2029-2033.