Supporting Information

Revealing Failure Mechanism of Transition-Metal Chalcogenides towards Copper Current Collector in Secondary Batteries

Guannan Zu^a, Gencai Guo^a, Hongyi Li^{*a}, Yue Lu^b, Ruzhi Wang^a, Yuxiang Hu^c,

Lianzhou Wang*c and Jinshu Wang*a

- ^a Key Laboratory of Advanced Functional Materials of Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China. Email: lhy06@bjut.edu.cn, wangjsh@bjut.edu.cn. Tel.: +86-67391101
- ^b Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, China.
- ^c Nanomaterials Centre, Australian Institute for Bioengineering and Nanotechnology, and School of Chemical Engineering, The University of Queensland, Australia. Email: l.wang@uq.edu.au

Fig. S1 SEM cross section view of (a) Cu/1hTi/MoS₂, (b) Cu/2hTi/MoS₂ (the white lines in (a) and (b) illustrated sputtered Ti layers).

Fig. S2 (a) SEM image and (b) cross section view of Cu/1hTi.

ruble bri representative experin	iterits on Three in Secondary butteries.	
Control groups	Conclusion	
(a)	The traditional Cu thin foils could also arise	
Cu _{thin foil} /MoS ₂ and Cu _{thin foil} /2hTi/MoS ₂	the generation of Cu ₂ S NPs.	
(b)	Ti was not the only choice for the	
Cu/MoS ₂ and Cu/2hW/MoS ₂	construction of passivation layer between Cu	
	and MoS ₂	
(c)	Ti was not the only choice for the	
Cu/MoS_2 and $Cu/C/MoS_2$	construction of protection layer between Cu and MoS ₂	
(d)	The formation of Cu ₂ S wasn't related to the	
Cu/MoS ₂ (prepared at 25 °C)	preparation temperature.	
(e)	The influence of CuO (might generate during	
Cu/2hCu/MoS ₂	polishing) was validated, we found that the	
	generation of Cu ₂ S wasn't related to CuO.	
(f)	The cycling performance was similar with	
Ti/MoS ₂	that of $Cu/Ti/MoS_2$.	
(g)	WS ₂ showed the same failure mechanism	
Cu/WS ₂ and Cu/2hTi/WS ₂	with MoS ₂ . The improvement strategy was	
	effective for WS_2 .	
(h)	FeS showed the same failure mechanism with	
Cu/FeS and Cu/2hTi/FeS	FeS. The improvement strategy was effective	
	for FeS.	
(i)	Based on the conventional slurry/coating	
Cu _{thin foil} /MoS _{2 bulk powder}	method, Cu ₂ S could be observed in Cu _{thin}	
	$_{\text{foil}}/\text{MoS}_{2 \text{ bulk powder}}$ resultant prepared by the	
	conventional slurry/coating method	
	2	

Table S1 Representative experiments on TMCs in secondary batteries.

- [a] All the metal layers (Ti, W, Cu) have been prepared for 2 h, with direct current power of 200 W at 400 °C. All the TMCs films have been prepared for 1 h, with radio frequency power of 100 W at 400 °C.
- [b] Cu foil-Φ16 mm, 0.5 mm in thickness, 99.95% in purity, Cu_{thin foil}-Φ16 mm, 9 μm in thickness.
- [c] The batteries in Table S1 were tested at the current density of 1 C with the window of 0.1-3 V at room temperature.

Fig. S3 SEM images of (a) Cu_{thin foil}/MoS₂, (b) Cu_{thin foil}/2hTi/MoS₂, (c) Cu/2hW/MoS₂,
(d) Cu/MoS₂ (prepared at room temperature), (e) Cu/2hCu/MoS₂, (f) Ti/MoS₂, (g) Cu/WS₂, (h) Cu/2hTi/WS₂, (i) Cu/FeS, (j) Cu/2hTi/FeS.

Fig. S4 CV curves of (a) Cu/WS₂ and (c) Cu/2hTi/WS₂, (b) Cu/FeS and (d) Cu/2hTi/FeS. The CV curves were obtained at the scan rate of 0.1 mVs^{-1} and sweep window of 0-3 V.

Fig. S5 Cycling performance of different samples corresponding to Table S1.

Fig. S6 TEM images of the other Cu/MoS_2 sample after 200-cycle test at 1 C. (a) low magnitude, (b) enlarged image of the red line area in (a), (c) enlarged image of the white line area in (a).

Fig. S7 TEM image of Cu/MoS₂ anode after cycling.

Fig. S8 TEM images of Cu/MoS₂ (prepared at 25 °C) anode in LIBs (a) before and (b) after cycling at 1 C. The inset image was the enlarged figure of the red area in (b).

Fig. S9 TEM images of (a) Cu/WS $_2$ and (b) Cu/2hTi/WS $_2$ anode in LIBs after cycling at 1 C.

Fig. S10 TEM images of (a) Cu/FeS and (b) Cu/2hTi/FeS anode in LIBs after cycling at 1 C.

Fig. S11 (a) The cycling performance of commercial bulk MoS_2 powder at 0.5 and 1 C, SEM images of the mixture of MoS_2 powder, carbon black and PVDF (b) before cycling, (c) after cycling, TEM images of MoS_2 after cycling (d) low magnitude, (e) high resolution. The inset TEM image in Fig. S12e was the enlarged figure of the red line area.

Fig. S12 TEM images of Cu/2hCu/MoS₂ anode in LIBs (a) before and (b) after cycling at 1 C.

Fig. S13 TEM images of Ti/MoS_2 anode in LIBs (a) before and (b) after cycling at 1 C.

Table S2 Formation energy of different substances according to the first-principles calculations

Structure	E (eV/formula)
MoS ₂ (bulk)	-21.7940059
Cu (metal)	-3.72875892
Cu ₂ S (bulk)	-11.74212656
Li (bulk)	-1.898217485
Li ₂ S (bulk)	-11.96849764
Mo (metal)	-10.94908539
S(bulk)	-4.12142378562
S ₈ (bulk, single atom)	-4.12329825219

$\Delta H= 3.89 eV$	Endothermic reaction
$\Delta H= 2.28 \text{ eV}$	Endothermic reaction
ΔH = -0.16 eV	Exothermic reaction
ΔH = -1.29 eV	Exothermic reaction
	$\Delta H= 3.89 \text{eV}$ $\Delta H= 2.28 \text{ eV}$ $\Delta H= -0.16 \text{ eV}$ $\Delta H= -1.29 \text{ eV}$

Experimental section of MoS₂ in SIBs

The preparation procedures of Cu/MoS₂ and Cu/2hTi/MoS₂ have been described in the main manuscript. The SIBs adopted Na metal as the counter electrode and 1 M NaClO₄ dissolved in propylene carbonate/fluoroethylene carbonate (PC: 2% FEC) as the electrolyte. Glass fiber (GF/A: 1.6 μ m, Whatman, America) acted as the separator. The galvanostatic charge and discharge measurements were carried out on CT2001A model (LANHE, China) with the testing window of 0.1-3 V (vs. Na/Na⁺) at different current densities at room temperature. Cyclic voltammograms (CV) measurement was performed on a ParSTAT MC electrochemical working station (Ametek Advanced Measurement Technology, America) with the window of 0-3 V. The samples were used as anodes to assemble 2032-coin cells in an argon-filled glove box with both H₂O and O₂ concentration below 0.5 ppm.

Fig. S16 CV curves of (a) Cu/MoS₂ and (b) Cu/2hTi/MoS₂ in SIBs, (c) cycling test and (d) rate

performance of Cu/MoS₂ and Cu/2hTi/MoS₂.

Fig. S17 TEM images of (a) Cu/MoS₂ and (b) Cu/2hTi/MoS₂ anodes in SIBs after cycling at 1 C. After disassembling the cycled SIBs, TEM characterization was carried out, as shown in Figure S16. Cu₂S NPs were observed on Cu/MoS₂ resultant (Figure S17a), while none was observed in the cycled Cu/2hTi/MoS₂ resultant (Figure S17b). This result indicated that the corrosive side reaction between Cu and S also occurred in TMCs-based anode in SIBs, which was the other convincing evidence of the corrosion mechanism in rechargeable batteries.