Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

1	Supporting Information			
2				
3 4	Pulse electrodeposited amorphous tunnel layer stabilises Cu_2O for efficient photoelectrochemica water splitting under visible-light irradiation			
5	Hao Wu, ^{a,b} Zhaoke Zheng, ^c Cui Ying Toe, ^b Xiaoming Wen, ^d Judy N. Hart, ^e Rose Amal, ^b Yun Hau Ng ^{*a,b}			
6 7 8	^{a.} School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, SAR, P. R. China Email: <u>yunhau.ng@cityu.edu.hk</u>			
9 10	^{b.} Particles and Catalysis Research Group, School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia			
11 12	^{c.} State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China			
13 14	^{d.} Centre for Micro-Photonics, Faculty of Science, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia			
15 16 17 18	^{e.} School of Materials Science and Engineering, UNSW Sydney, NSW 2052, Australia			

- 3 Figure S1. SEM images of pulse electrodeposited ZnO thin films on Cu₂O with a) 36 cycles and b) 60 cycles; SEM images
- 4 of ZnO thin films electrodeposited on Cu_2O in a single-step process at constant potentials of c) -0.75 V and d) -1.1 V vs.
- 5 Ag/AgCl (1 M KCl).

Figure S2. Low magnification SEM images showing top views of a) bare Cu_2O and b) $TiO_2/ZnO/Cu_2O$ photoelectrodes.

3 Figure S3. X-ray diffraction patterns of a) Cu₂O, and b) TiO₂/ZnO/Cu₂O photoelectrodes.

Figure S4. Linear sweep voltammetry (*I-V*) curves acquired at a scan rate of 2 mV s⁻¹ for the Pt modified Cu₂O, TiO₂/Cu₂O and TiO₂/ZnO/Cu₂O photoelectrodes.

Figure S5. The *I-t* curve of ZnO/Cu₂O photoelectrode at -0.2 V vs. Ag/AgCl (1 M KCl) in 0.1 M Na₂SO₄ solution under
visible-light irradiation (>420 nm)

Figure S6. Post-reaction SEM images of a) bare Cu_2O , b) ZnO/Cu_2O , c) TiO_2/Cu_2O and d) $TiO_2/ZnO/Cu_2O$ photoelectrodes.

5 Ultra-pure N₂ with a flow rate of 50 ml/min was continuously purged through the electrolyte for 30 mins 6 before the PEC measurements to remove the dissolved O₂. The electrolyte used in the PEC measurements is 7 0.1 M Na₂SO₄ with pH of 6.8 confirmed by an electrochemical pH meter, indicating a relatively acidic reaction 8 condition. As shown in the equations below, Liming Dai et al. reported that H₂O₂ and H₂O are the products 9 of O₂ reduction in acidic media.¹ In this process, the formation of H₂O₂ is an important intermediate which 10 can be detected by UV-vis method. In theory, H₂O₂ molecules will react with iodide anions (I⁻) under acidic 11 condition (H₂O₂ + 3I⁻ + 2H⁺ \rightarrow I³⁻ + 2H₂O) to produce triiodide anions (I³⁻), which processes a strong absorption 12 at 351 nm. Moreover, Figure S7 shows absorptions of several standard H₂O₂ solutions, revealing the high 13 sensitivity of this method for H₂O₂ detection (2.5 µM).

14 Acid media:
$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O_2$$

 $15 \quad 0_2 + 2H^+ + 2e^- \rightarrow H_2 O_2$

$$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O_2$$

17 Subsequently, we operated a non-chopped *I-t* measurement on the $TiO_2/ZnO/Cu_2O$ sample for 20 mins. The 18 theoretical value of H_2O_2 was calculated to be roughly 90 μ M for the $TiO_2/ZnO/Cu_2O$ and 50 μ M for the 19 TiO_2/Cu_2O and Cu_2O photoelectrodes. However, the UV-vis result showed a negligible absorption at 350 nm 20 for the electrolyte after *I-t* measurement, indicating the negligible amount of H_2O_2 generated. Even though 21 we understand that the H_2O_2 is not the only product of O_2 reduction, the UV-vis results elucidate that less 22 than 2.5 μ M H_2O_2 (account for 2.7% of the theoretical value) was generated during the PEC measurement. 23 Therefore, we can rule out the possibility of O_2 reduction under the current testing conditions.

24

- **Figure S8.** SEM images of the Pt modified a) Cu_2O photoelectrode, b) TiO_2/Cu_2O photoelectrode and c) $TiO_2/ZnO/Cu_2O$ 3 photoelectrode.

Figure S9. Tauc plots of a) bare Cu_2O and b) $TiO_2/ZnO/Cu_2O$; c) UV-vis absorbance spectra of Cu_2O and $TiO_2/ZnO/Cu_2O$.

Table S1. Photoelectrochemical H₂ Evolution Using Cu₂O-based Photocathodes^a

Sample	Potential/V ^b	H₂/µmol	Faraday Efficiency	
TiO ₂ /ZnO/Cu ₂ O	-0.6 V	21.79	95.7%	
TiO ₂ /Cu ₂ O	-0.6 V	12.76	62.5%	
ZnO/Cu₂O	-0.6 V	n.d.	n.d.	
Cu ₂ O	-0.6 V	n.d.	n.d.	

3 a. All faraday efficiencies measurements were performed with Pt cocatalyst and irradiated at $\lambda > 420$ nm for 1 h in 0.1

- 4 M Na₂SO₄ aqueous solution under an Ar atmosphere.
- 5 b. Versus Ag/AgCl (1 M KCl).

6

- 7 Reference
- 8 1 J. Zhang, Z. Xia and L. Dai, *Science Advances*, 2015, **1**, e1500564.