Electronic Supplementary Information

## An Oxygen Vacancies-Rich Two-Dimensional Au/TiO<sub>2</sub> Hybrid for Synergistically Enhanced Electrochemical $N_2$ Activation and Reduction

Sen Zhao<sup>+</sup>, Han-xuan Liu<sup>+</sup>, Yu Qiu, Shuang-quan Liu, Jin-xiang Diao, Chun-ran Chang,<sup>\*</sup> Rui Si, Xiao-hui Guo<sup>\*</sup>

Corresponding email: <u>guoxh2009@nwu.edu.cn</u>, changcr@mail.xjtu.edu.cn Tel (Fax): (+)86-29-81535025.

<sup>+</sup> These authors contributed equally to the work.

**Details of DFT calculations** 

All the calculations were performed using the Vienna Ab-initio Simulation Package (VASP).<sup>[1]</sup> A plane-wave basis set with an energy cutoff of 400 eV was used to treat the valence electrons. The projected-augmented wave (PAW) pseudopotentials were used to describe the core electrons<sup>[2]</sup> and the DFT+ $U^{[3]}$  (U = 5.0 eV) method was utilized for the 3d orbital of Ti in TiO<sub>2</sub>. The generalized gradient approximation (GGA) method with Perdew-Burke-Ernzerh of (PBE) functional for the exchange-correlation term was used<sup>[4]</sup>. The Brillouin zone sampled with  $3 \times 3 \times 1$  and  $7 \times 7 \times 1$ Monkhorst-Pack grids were adopted for reaction thermodynamics and density of states (DOS) calculations, respectively.<sup>[5]</sup> The solvation effect was not considered in the calculations as the energy deviations in NRR is within 0.1 eV.<sup>[6]</sup> The energies of reaction species were obtained as  $\Delta E = \Delta E_{\text{total}} + \Delta E_{\text{ZPE}} - U \cdot ne^{[7, 8]}$  where  $\Delta E_{\text{total}}$  is the total energy calculated from DFT calculations,  $\Delta E_{ZPE}$  is the zero-point energy, U is the potential for electrochemistry process, n is the number of electrons participated in the step, and e is the elementary charge. Reversible hydrogen electrode (RHE) was taken as the benchmark of potential in these calculations for adjusting the total energy of hydrogen ion to 1/2 energy of H<sub>2</sub>.<sup>[8]</sup> The thermodynamic data of H<sub>2</sub>, N<sub>2</sub> and NH<sub>3</sub> were obtained from NIST.<sup>[9]</sup> The values of band centers were obtained from  $E_{\text{band center}} = E_{\text{PDOS}}$ total /I,<sup>[10]</sup> where  $E_{\text{PDOS total}}$  is the integral of the product of DOS and energy, I is the integral of DOS. The interval from -25 eV to 5 eV were used for calculating the d band center, the interval below the Fermi level were used for calculating the valence band center, and the interval above the Fermi level were used for calculating the conduction band center.

The catalyst model was built based on the mainly exposed  $TiO_2(112)$  surface which was identified as the substrate of Au<sub>6</sub> clusters from HRTEM. The constructed  $TiO_2(112)$  slab contains four atomic layers with two bottom atomic layers constrained during relaxation. A vacuum space of 10 Å thick was used to avoid the interaction between surface slabs. An Au<sub>6</sub> cluster having two atomic layers was set on the  $p(2\times 2)$  $TiO_2(112)$  surface as the initial catalyst structure. After relaxation, the Au<sub>6</sub> cluster become flat on the surface, reflecting the extensibility of gold. References:

- [1] a) G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558; b) G. Kresse, J. Hafner, Phys. Rev. B 1994,
- 49, 14251; c) G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
- [2] a) P. E. Blöchl, *Phys. Rev. B* 1994, *50*, 17953;b) G. Kresse, D. Joubert, *Phys. Rev. B* 1999, *59*, 1758.
- [3] S.L.Dudarev, G.A.Botton, S.Y.Savrasov, C.J.Humphreys, A.P.Sutton, *Phys. Rev. B*. 1998, 57, 1505.
- [4] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- [5] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- [6] J. H. Montoya, C. Tsai, A. Vojvodic, J. K. Nørskov, ChemSusChem 2015, 8, 2180.
- Y. F. Fang, Z. C. Liu, J. R. Han, Z. Y. Jin, Y. Q. Han, F. X. Wang, Y. S. Niu, Y. P. Wu, Y. H.
   Xu, Adv. Energy Mater. 2019, 1803406
- [8] J. Rossmeisl, Z. W. Qu, H. Zhu, G. J. Kroes, J. K. Nørskov, *J. Electroanal. Chem.*2007, 607,
  83.
- [9] http://cccbdb.nist.gov/
- [10] a) J. R. Kitchin, J. K. Nørskov, M. A. Barteau, J. G. Chen, J. Chem. Phys. 2004, 120, 10240;b)
- L. Bai, X. Wang, Q. Chen, Y. Ye, H. Zheng, J. Guo, Y. Yin, C. Gao, *Angew. Chem.-Int. Edit.*2016, 55, 15656.



Figure S1: Morphology and structure analysis for pure TiO<sub>2</sub> sample, (a-b) SEM images; (c-d) TEM images with different magnifications.



Figure S2: Morphology and structure analysis for pure 1wt% Au/TiO<sub>2</sub> sample, (a-b) SEM images; (c-d) TEM images with different magnifications.



Figure S3: Morphology and structure analysis for 3wt% Au/TiO<sub>2</sub> sample, (a-b) SEM images; (c-d) TEM images with different magnifications.



Figure S4: Raman spectra analysis for pure  $TiO_2$  and  $Au/TiO_2$  samples with different gold loading amounts.



Figure S5: XPS spectrum for pure TiO<sub>2</sub> sample, (a) XPS of C 1s; (b) XPS of O 1s.



Figure S6: XPS spectrum for the prepared 1 wt% Au/TiO<sub>2</sub> sample, (a) XPS of C 1s; (b) XPS of O 1s; (c) XPS of Au 4f.



Figure S7: XPS spectrum for the prepared 3wt% Au/TiO<sub>2</sub> sample, (a) XPS of C 1s; (b) XPS of O 1s; (c) XPS of Au 4f.

**Table S1:** Au L<sub>3</sub>-edge EXAFS fitting results (*R*: distance; *CN*: coordination number;  $\sigma^2$ : Debye-Waller factor;  $\Delta E_0$ : inner potential correction) of 2wt% Au/TiO<sub>2</sub>.

| Sample   | Au-O         |    | Au-A         | Au-Au       |                 |                   |
|----------|--------------|----|--------------|-------------|-----------------|-------------------|
|          | <i>R</i> (Å) | CN | <i>R</i> (Å) | CN          | $\sigma^2(A^2)$ | $\Delta E_0 (eV)$ |
| 2wt%     | _            | _  | 2.91±0.02    | 9.0±0.<br>9 | 0.008           | 7.8±1.8           |
| Au/ 1102 |              |    |              |             |                 |                   |

*R*: distance; *CN*: coordination number;  $\sigma^2$ : Debye– Waller factor;  $\Delta E_0$ : inner potential correction



Figure S8: Linear sweep voltammetry (LSV) curves for 2wt% Au/TiO<sub>2</sub> in N<sub>2</sub>-saturated and Ar-saturated 0.01 M HCl solution.



Figure S9: (a) UV-Vis absorption spectra of indophenol assays with  $NH_4^+$  ions after incubated for 2 h at room temperature. (b) Calibration curve used for estimation of  $NH_3$  from the  $NH_4^+$  ion concentration.



Figure S10: (a)UV-Vis absorption spectra of the 2wt% Au/TiO<sub>2</sub> stained with indophenol indicator after NRR electrolysis for 2 h and (b) Chronoamperometry results of electrode recorded at various potentials



Figure S11: Ion-chromatogram testing for the prepared 2wt% Au/TiO<sub>2</sub> hybrid catalyst, (a) Ion chromatogram curves for the standard NH<sub>4</sub><sup>+</sup> ions. (b) Calibration curve used for estimation of NH<sub>4</sub><sup>+</sup>. (c) Ion chromatogram for the electrolytes at a series of potentials after electrolysis for 2 h. (d) NH<sub>3</sub> yield rate and Faradaic efficiency at corresponding potentials



Figure S12: The standard deviation plot for  $NH_3$  yield rate and FE of 2 wt% Au/TiO<sub>2</sub> hybrid after 5 cycles at a potential of -0.4 V under ambient conditions.



Figure S13: NRR testing for the prepared  $TiO_2$  (a) Linear sweep voltammetry (LSV) curves of electrode recorded in N<sub>2</sub>-saturated and Ar-saturated 0.01 M HCl solution (b) Chronoamperometry results at various potentials (c) Corresponding UV-vis absorption spectra of the electrolyte stained with indicator for NH<sub>3</sub>. (d) Faradaic efficiency and NH<sub>3</sub> yield rate at various potentials



Figure S14: NRR testing for the prepared 1wt% Au/TiO<sub>2</sub> sample, (a); NH<sub>3</sub> yield rate and Faradaic efficiency at each potential. (b) UV-Vis absorption spectra of the electrolytes stained with indophenol indicator after NRR electrolysis for 2h.



Figure S15: NRR testing for the prepared 3wt% Au/TiO<sub>2</sub> sample, (a) NH<sub>3</sub> yield rate and Faradaic efficiency at each potential. (b) UV-Vis absorption spectra of the electrolytes stained with indophenol indicator after NRR electrolysis for 2h.



**Figure S16:** CV and the calculated ECSAs results of the pure TiO<sub>2</sub> and Au/TiO<sub>2</sub> samples with different gold loading amounts, (A-B) TiO<sub>2</sub>; (C-D) 1wt% Au/TiO<sub>2</sub>; (E-F) 2wt% Au/TiO<sub>2</sub>; (G-H) 3wt% Au/TiO<sub>2</sub>.



Figure S17: EIS testing for pure  $TiO_2$  and  $Au/TiO_2$  samples with different gold loading amounts.



Figure S18: (a) (a) UV-vis curves of various N<sub>2</sub>H<sub>4</sub>·H<sub>2</sub>O concentrations after incubation

for 10 min at room temperature. (b) Calibration curve used for estimation of  $N_2H_4\cdot H_2O$  concentration.



Figure S19: UV-Vis absorption spectra of the electrolytes estimation by the method of Watt and Chrisp before and after 2 h electrolysis in  $N_2$  atmosphere at -0.40 V.



Figure S20: Time-dependent current density curve for the 2wt% Au/TiO<sub>2</sub> catalyst at -0.40 V for 24 h.



Figure S21: XRD patterns analysis for the prepared 2wt% Au/TiO<sub>2</sub> hybrid catalyst before and after long-term cycling NRR



Figure S22: Morphology analysis for the prepared 2wt% Au/TiO<sub>2</sub> hybrid catalyst before and after long-term cycling NRR, (a) SEM image; (b) HRTEM image after long-term NRR catalysis.



Figure S23: XPS spectrum analysis for the prepared 2wt% Au/TiO<sub>2</sub> hybrid catalyst before and after long-term cycling NRR.



**Figure S24.** Structure of Au<sub>6</sub> cluster adsorbed on different site of TiO<sub>2</sub>(112) surface. The adsorption energy relative to Au<sub>6</sub> on perfect TiO<sub>2</sub>(112) and the amount of electron transferred from the substrate were given below.



Figure S25. Possible reaction pathways of NRR on  $TiO_2$ - $V_0$  surface. Red line shows the most favorable reaction route.











 $E_{2,3} = 0.27 \text{ eV}$ 

 $E_{3_1} = 0.09 \text{ eV}$ 



 $E_{3_2} = -1.80 \text{ eV}$ 



Figure S26. The structure and energy of the species labeled in Figure S25.



Figure S27. Possible reaction routes of NRR on  $Au_6/TiO_2$ - $V_O$  surface. Red line shows the most favorable route.









0.10 eV A

 $E_{2_1} = -0.05 \text{ eV}$ 







 $E_{2_2} = -0.12 \text{ eV}$ 

 $E_{2_3} = 0.59 \text{ eV}$ 

 $E_{3_1} = -1.89 \text{ eV}$ 

 $E_{3_{1d}} = -0.55 \text{ eV}$ 



Figure S28. The structure and energy of the species labeled in Figure S27.

|                                   | TiO <sub>2</sub> -V <sub>0</sub> | Au <sub>6</sub> /TiO <sub>2</sub> | Au <sub>6</sub> /TiO <sub>2</sub> -V <sub>O</sub> |
|-----------------------------------|----------------------------------|-----------------------------------|---------------------------------------------------|
| $\Box E_{ m ads-Au6}$ / eV        | —                                | 0.00                              | -1.65                                             |
| $\Box C_{ m Au^6}{}^a$ / e-       | —                                | 0.075                             | 0.463                                             |
| $\Box E_{ads-H^+-max}$ / eV       | -0.59                            | 0.12                              | -0.59                                             |
| $\Box E_{ m ads-N_2-max}$ / eV    | -0.47                            | -0.14                             | -0.40                                             |
| $\Box d_{\mathrm{N-N}}{}^{b}$ / Å | 0.026                            | 0.000                             | 0.029                                             |

Table S2. Adsorption Characteristics of  $Au_6$  Cluster,  $N_2$  and  $H^+$  on Different Surfaces

<sup>*a*</sup> Amount of electrons transferred from  $TiO_2$  or  $TiO_2$ -V<sub>O</sub> to Au<sub>6</sub> cluster. <sup>*b*</sup> Increase of N-N bond length with respect to that of gas-phase N<sub>2</sub>.

**Table S3.** The adsorption energies of  $N_2$  on different adsorption sites of  $TiO_2$ - $V_0$ ,  $Au_6/TiO_2$ , and  $Au_6/TiO_2$ - $V_0$ . The number (n) means the n<sup>th</sup> stable adsorption site in Figure 1(d – f).

|        | $TiO_2 - V_O$            |                        | Au <sub>6</sub> /TiO <sub>2</sub> |                        | $Au_6/TiO_2 - V_O$        |                        |
|--------|--------------------------|------------------------|-----------------------------------|------------------------|---------------------------|------------------------|
|        | $\Delta E_{ m ads}$ / eV | $\Delta d_{ m N-N}$ /Å | $\Delta E_{ m ads}$ /eV           | $\Delta d_{ m N-N}$ /Å | $\Delta E_{ m ads}/ m eV$ | $\Delta d_{ m N-N}$ /Å |
| Site 1 | -0.47                    | 0.026                  | -0.14                             | 0.000                  | -0.40                     | 0.029                  |
| Site 2 | -0.22                    | 0.000                  | -0.06                             | 0.001                  | -0.21                     | 0.002                  |
| Site 3 | -0.04                    | 0.001                  | -0.05                             | 0.001                  | -0.05                     | 0.001                  |

|        | TiO <sub>2</sub> -V <sub>0</sub> | Au <sub>6</sub> /TiO <sub>2</sub> | Au <sub>6</sub> /TiO <sub>2</sub> -V <sub>O</sub> |
|--------|----------------------------------|-----------------------------------|---------------------------------------------------|
| Site 1 | -0.59 eV                         | 0.12 eV                           | – 0.59 ev                                         |
| Site 2 | 0.07 eV                          | 0.84 eV                           | - 0.36 ev                                         |
| Site 3 | 0.00 eV                          | 0.71 eV                           | – 0.53 ev                                         |
| Site 4 | 0.13 eV                          | 0.17 eV                           | - 0.17 ev                                         |
| Site 5 | _                                | _                                 | – 0.11 eV                                         |

**Table S4.** The adsorption energies of  $H^+$  on different adsorption sites of  $TiO_2$ - $V_O$ ,  $Au_6/TiO_2$ , and  $Au_6/TiO_2$ - $V_O$ . The number (n) means the n<sup>th</sup> stable adsorption site in Figure 1(g – i).

**Table S5.** The d band center, valence band center and conduction band center of Ti and Au atoms participated in the adsorption of  $N_2$ .

| band cen                                          | ter                | <i>d</i> <sub>total</sub> | <i>d</i> <sub>xy</sub> | <i>d</i> <sub>xz</sub> | $d_{\rm yz}$ | $d_{x2-y2}$ | $d_{z2}$ |
|---------------------------------------------------|--------------------|---------------------------|------------------------|------------------------|--------------|-------------|----------|
|                                                   | Ti_d               | -1.41                     | -1.75                  | -0.71                  | -1.51        | -2.62       | -0.81    |
| TiO <sub>2</sub> -V <sub>0</sub>                  | Ti <sub>a</sub> _V | -5.54                     | -6.35                  | -5.04                  | -4.56        | -7.83       | -3.46    |
|                                                   | Ti <sub>a</sub> _C | 0.71                      | 1.12                   | 0.40                   | 0.73         | 1.07        | 0.64     |
| Au <sub>6</sub> /TiO <sub>2</sub> -V <sub>O</sub> | Au_d               | -4.01                     | -3.81                  | -4.1                   | -3.98        | -3.89       | -4.38    |
|                                                   | Au_V               | -4.25                     | -4.00                  | -4.38                  | -4.23        | -4.06       | -4.69    |
|                                                   | Au_C               | 1.65                      | 2.12                   | 1.73                   | 1.52         | 1.64        | 1.36     |
|                                                   | Ti <sub>b</sub> _d | -0.38                     | -0.38                  | -0.11                  | -0.16        | -0.44       | -1.53    |
|                                                   | Ti <sub>b</sub> -V | -4.81                     | -4.81                  | -5.11                  | -2.67        | -6.72       | -6.27    |
|                                                   | Ti <sub>b</sub> _C | 1.83                      | 1.82                   | 1.43                   | 1.53         | 2.69        | 1.98     |

Table S6: NRR Comparison of our catalysts with previously reportedelectrocatalysts

| Catalyst                          | Electrolyte                                    | <b>NH<sub>3</sub> yield</b><br>$\mu g h^{-1} mg^{-1}_{cat}$ | FE (%) | Ref.      |
|-----------------------------------|------------------------------------------------|-------------------------------------------------------------|--------|-----------|
| 2 wt% Au/TiO <sub>2</sub>         | 0.01 M HCl                                     | 64.6                                                        | 29.5   | This work |
| TiO <sub>2</sub>                  | $0.1 \text{ M Na}_{2} \text{SO}_{4}$           | 5.6                                                         | 2.5    | 1         |
| TiO <sub>2</sub> -rGO             | $0.1 \text{ M Na}_2 \text{SO}_4$               | 15.13                                                       | 3.3    | 2         |
| V-TiO <sub>2</sub>                | 0.5 M LiClO <sub>4</sub>                       | 17.76                                                       | 15.3   | 3         |
| C-doped TiO <sub>2</sub>          | $0.5M \operatorname{Na}_2 \operatorname{SO}_4$ | 16.22                                                       | 1.84   | 4         |
| Au-Fe <sub>3</sub> O <sub>4</sub> | 0.1 M HCl                                      | 21.42                                                       | 10.54  | 5         |
| B-doped TiO <sub>2</sub>          | $0.1 \text{ M Na}_2 \text{SO}_4$               | 14.4                                                        | 3.4    | 6         |
| $TiO_2/Ti_3C_2T_x$                | 0.1 M HCl                                      | 32.17                                                       | 16.07  | 7         |
| Au/Ti <sub>3</sub> C <sub>2</sub> | 0.1 M HCl                                      | 30.06                                                       | 18.34  | 8         |
| Au nanorods                       | 0.1 M KOH                                      | 1.648                                                       | 4.02   | 9         |
| AuSAs-NDPCs                       | 0.1M HCl                                       | 2.32                                                        | 12.3   | 10        |
| Au HNCs                           | 0.5 M LiClO <sub>4</sub>                       | 3.96                                                        | 35.9   | 11        |
| a-Au/CeOx-RGO                     | 0.1 M HCl                                      | 8.3                                                         | 10.1   | 12        |
| Au Nanoclusters<br>on TiO $_2$    | 0.1 M HCl                                      | 21.4                                                        | 8.11   | 13        |
| Au/CeO <sub>2</sub>               | 0.01 M H <sub>2</sub> SO <sub>4</sub>          | 28.2                                                        | 9.5    | 14        |
| Au/Ni                             | $0.1 \text{ M Na}_2 \text{SO}_4$               | 9.42                                                        | 13.36  | 15        |
| Au flower                         | 0.1 M HCl                                      | 35.57                                                       | 6.05   | 16        |

| Ru SAs/N-C                      | $0.05 \text{ M} \text{ H}_2\text{SO}_4$ | 120.9 | 29.6 | 17 |
|---------------------------------|-----------------------------------------|-------|------|----|
| Ru NPs                          | 0.01 M HCl                              | 21.4  | 5.4  | 18 |
| Defect-rich<br>MoS <sub>2</sub> | 0.1 M Na <sub>2</sub> SO <sub>4</sub>   | 29.28 | 8.34 | 19 |
| Au/NCM                          | 0.1 M HCl                               | 36    | 22   | 20 |
| $Au_1/C_3N_4$                   | $5 \text{ mM H}_2\text{SO}_4$           | 1.96  | 11.1 | 21 |
| Au nanocage                     | 0.5 M LiClO <sub>4</sub>                | 2.35  | 30.2 | 22 |

References:

1. Zhang, R.; Ren, X.; Shi, X.; Xie, F.; Zheng, B.; Guo, X.; Sun, X., Enabling Effective Electrocatalytic N<sub>2</sub> Conversion to NH<sub>3</sub> by the TiO<sub>2</sub> Nanosheets Array under Ambient Conditions. *ACS Appl. Mater. Interfaces.* **2018**, 10, 28251-28255.

2. Zhang, X.; Liu, Q.; Shi, X.; Asiri, A. M.; Luo, Y.; Sun, X.; Li, T., TiO<sub>2</sub> nanoparticles– reduced graphene oxide hybrid: an efficient and durable electrocatalyst toward artificial N<sub>2</sub> fixation to NH<sub>3</sub> under ambient conditions. *J. Mater. Chem. A.* **2018**, 6, 17303-17306. 1. Zhang, R.; Ren, X.; Shi, X.; Xie, F.; Zheng, B.; Guo, X.; Sun, X., Enabling Effective Electrocatalytic N<sub>2</sub> Conversion to NH<sub>3</sub> by the TiO<sub>2</sub> Nanosheets Array under Ambient Conditions. *ACS Appl. Mater. Interfaces.* **2018**, 10, 28251-28255.

2. Zhang, X.; Liu, Q.; Shi, X.; Asiri, A. M.; Luo, Y.; Sun, X.; Li, T., TiO<sub>2</sub> nanoparticles– reduced graphene oxide hybrid: an efficient and durable electrocatalyst toward artificial N<sub>2</sub> fixation to NH3 under ambient conditions. *J. Mater. Chem. A.* **2018**, 6, 17303-17306.

3. Wu, T.; Kong, W.; Zhang, Y.; Xing, Z.; Zhao, J.; Wang, T.; Shi, X.; Luo, Y.; Sun, X., Greatly Enhanced Electrocatalytic N<sub>2</sub> Reduction on TiO<sub>2</sub> via V Doping. *Small Methods.* **2019**, 1900356.

4. Jia, K.; Wang, Y.; Pan, Q.; Zhong, B.; Luo, Y.; Cui, G.; Guo, X.; Sun, X., Enabling the electrocatalytic fixation of N<sub>2</sub> to NH<sub>3</sub> by C-doped TiO<sub>2</sub> nanoparticles under ambient conditions. *Nanoscale Adv.* **2019**, 1, 961-964.

5. Zhang, J.; Ji. Y.; Wang, P.; Huang, X.; Adsorbing and Activating N-2 on Heterogeneous Au-Fe3O4 Nanoparticles for N-2 Fixation, *Adv. Funct. Mater*, **2019**, 1906576.

6. Wang, Y.; Jia, K.; Pan, Q.; Xu, Y.; Liu, Q.; Cui, G.; Guo, X.; Sun, X., Boron-Doped TiO<sub>2</sub> for Efficient Electrocatalytic N<sub>2</sub> Fixation to NH<sub>3</sub> at Ambient Conditions. *ACS Sustainable Chem. Eng.* **2018**, 7, 117-122.

7. Fang, Y.; Liu, Z.; Han, J.; Jin, Z.; Han, Y.; Wang, F.; Niu, Y.; Wu, Y.; Xu, Y., High-Performance Electrocatalytic Conversion of  $N_2$  to  $NH_3$  Using

Oxygen-Vacancy-Rich TiO<sub>2</sub> In Situ Grown on  $Ti_3C_2T_x$  MXene. *Adv. Energy Mater.* **2019**, 9, 1803406.

8. Liu, D.; Zhang, G.; Ji, Q.; Zhang, Y.; Li, J., Synergistic Electrocatalytic Nitrogen Reduction Enabled by Confinement of Nanosized Au Particles onto a Two-Dimensional Ti<sub>3</sub>C<sub>2</sub> Substrate. *ACS Appl. Mater. Interfaces.* **2019**, 11, 25758-25765.

9. Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B., Electrochemical Reduction of N<sub>2</sub> under Ambient Conditions for Artificial N<sub>2</sub> Fixation and Renewable Energy Storage Using N<sub>2</sub> /NH<sub>3</sub> Cycle. *Adv. Mater.* **2017**, 29, 1604799.

10. Qin, Q.; Heil, T.; Antonietti, M.; Oschatz, M., Single-Site Gold Catalysts on Hierarchical N-Doped Porous Noble Carbon for Enhanced Electrochemical Reduction of Nitrogen. *Small Methods.* **2018**, 2, 1800202.

11. Nazemi, M.; El-Sayed, M. A., Electrochemical Synthesis of Ammonia from  $N_2$  and  $H_2O$  under Ambient Conditions Using Pore-Size-Controlled Hollow Gold Nanocatalysts with Tunable Plasmonic Properties. *J. Phys. Chem. Lett.* **2018**, 9, 5160-5166.

12. Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q., Amorphizing of Au Nanoparticles by  $CeO_x$  -RGO Hybrid Support towards Highly Efficient Electrocatalyst for N<sub>2</sub> Reduction under Ambient Conditions. *Adv. Mater.* **2017**, 29, 1700001.

13. Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q., Au Sub-Nanoclusters on TiO<sub>2</sub> toward Highly Efficient and Selective Electrocatalyst for N<sub>2</sub> Conversion to NH<sub>3</sub> at Ambient Conditions. *Adv. Mater.* **2017**, 29, 1606550.

14. Liu, G.; Cui, Z.; Han, M.; Zhang, S.; Zhao, C.; Chen, C.; Wang, G.; Zhang, H., Ambient Electrosynthesis of Ammonia on a Core-Shell-Structured Au@CeO<sub>2</sub> Catalyst: Contribution of Oxygen Vacancies in CeO<sub>2</sub>. *Chem. Eur. J.* **2019**, 25, 5904-5911.

15. Wang, H.; Yu, H.; Wang, Z.; Li, Y.; Xu, Y.; Li, X.; Xue, H.; Wang, L., Electrochemical Fabrication of Porous Au Film on Ni Foam for Nitrogen Reduction to Ammonia. *Small.* **2019**, 15, 1804769.

16. Wang, Z.; Li, Y.; Yu, H.; Xu, Y.; Xue, H.; Li, X.; Wang, H.; Wang, L., Ambient Electrochemical Synthesis of Ammonia from Nitrogen and Water Catalyzed by Flower-Like Gold Microstructures. *ChemSusChem.* **2018**, 11, 3480-3485.

17. Geng, Z.; Liu, Y.; Kong, X.; Li, P.; Li, K.; Liu, Z.; Du, J.; Shu, M.; Si, R.; Zeng, J., Achieving a Record-High Yield Rate of 120.9  $\mu g_{NH_3}$  mg<sup>-1</sup><sub>cat</sub>. h<sup>-1</sup> for N<sub>2</sub> Electrochemical Reduction over Ru Single-Atom Catalysts. *Adv. Mater.* **2018**, 1803498.

18. Wang, D.; Azofra, L. M.; Harb, M.; Cavallo, L.; Zhang, X.; Suryanto, B. H. R.; MacFarlane, D. R., Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions. *ChemSusChem.* **2018**, 11, 3416-3422.

19. Li, X.; Li, T.; Ma, Y.; Wei, Q.; Qiu, W.; Guo, H.; Shi, X.; Zhang, P.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X., Boosted Electrocatalytic N<sub>2</sub> Reduction to NH<sub>3</sub> by Defect-Rich MoS<sub>2</sub> Nanoflower. *Adv. Energy Mater.* **2018**, 8, 1801357.

20. Wang, H.; Wang, L.; Wang, Q.; Ye, S.; Sun, W.; Shao, Y.; Jiang, Z.; Qiao, Q.;

Zhu, Y.; Song, P.; Li, D.; He, L.; Zhang, X.; Yuan, J.; Wu, T.; Ozin, G. A., Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering. *Angew. Chem. Int. Ed.* . **2018**, 57, 12360-12364.

21. Wang, X.; Wang, W.; Qiao, M.; Wu, G.; Chen, W.; Yuan, T.; Xu, Q.; Chen, M.; Zhang, Y.; Wang, X.; Wang, J.; Ge, J.; Hong, X.; Li, Y.; Wu, Y.; Li, Y., Atomically dispersed Au<sub>1</sub> catalyst towards efficient electrochemical synthesis of ammonia. *Sci. Bull.* **2018**, 63, 1246-1253.

22. Nazemi, M.; Panikkanvalappil, S. R.; El-Sayed, M. A., Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. *Nano Energy*. **2018**, 49, 316-323.