## **Supporting Information**

## *In situ* construction of a MOF-derived carbon-encapsulated LiCoO<sub>2</sub> heterostructure as a superior cathode for elevated-voltage lithium storage: from experimental to theoretical study

Jia Lin,<sup>ab</sup> Chenghui Zeng,<sup>b</sup> Yueying Chen,<sup>a</sup> Xiaoming Lin,<sup>\*a</sup> Chao Xu<sup>\*a</sup> and Cheng-Yong Su<sup>\*c</sup>

<sup>a</sup> Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China

<sup>b</sup> College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang 330022, China

<sup>c</sup> MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China

## AUTHOR INFORMATION

E-mail: linxm@scnu.edu.cn; chaoxu@m.scnu.edu.cn; cesscy@mail.sysu.edu.cn



Fig. S1 XRD patterns of as-synthesized and simulated ZIF67.



Fig. S2 TGA plot of the ZIF67 under air atmosphere.



Fig. S3 XRD pattern of MOF-derived LCO-700 sample.



Fig. S4 Pore-size distribution curves of the LCO@C-600, -700, and -800, respectively.



Fig. S5 The cross-section view SEM image of the LCO@C-700 electrode film.



Fig. S6 The relationship of Z' and  $\omega^{-1/2}$  of LCO@C-600, -700, -800, and LCO-700 after (a) 1<sup>st</sup> cycle, (b) 100<sup>th</sup> cycle, and (c) 200<sup>th</sup> cycle.



Fig. S7 (a) XRD pattern and (b) SEM image of the LCO@C-700 electrode material scraped down of the electrode films after 200 cycles, respectively.



**Fig. S8** CV curves and the liner relationships of the main cathodic and anodic peaks at the different scan rates from 0.2 to 1.0 mV s<sup>-1</sup> for (a and c) LCO-700 and (b and d) LCO@C-600, respectively.



**Fig. S9** The CV curve separation of the pseudocapacitive current and total current contribution at 1.0 mV s<sup>-1</sup>, and contribution ratio of the diffusion- and pseudocapacitive-controlled capacities at different scan rates for (a and c) LCO-700 and (b and d) LCO@C-600, respectively.



**Fig. S10** Cluster structure of sole LiCoO<sub>2</sub> from the (a) top and (b) side view. The big green, pink, and blue spheres represent for Li, O, and Co atoms, respectively.



**Fig. S11** Cluster structure model of the LCO@C heterostructure from the (a) top and (b) side view. The big green, grey, yellow, pink, and blue spheres represent for Li, C, N, O, Co and atoms, respectively.



**Fig. S12** The Li-vacancy migration paths and corresponding calculated diffusion energy barrier profiles of sole LiCoO<sub>2</sub> from DFT calculations.



**Fig. S13** Comparison of the rate capability and long-cycling performance of the surface-coating LCO at an elevated cut-off voltage of 4.5 V.



Fig. S14 (a) Cyclability at the current density of 2 C, (b) rate capability at different current rates ranging from 0.1 C to 10 C of the LCO@C-700 and LCO-700 cathode films which includes 92 wt% active material, 4 wt% PVDF, and 4 wt% Super P.

Table S1 Crystallographic data obtained from detailed Rietveld refinement result of the LCO@C-600, -

|           | <i>a</i> -axis (Å) | <i>c</i> -axis (Å) | V (Å <sup>3</sup> ) | R <sub>wp</sub> (%) | R <sub>p</sub> (%) |
|-----------|--------------------|--------------------|---------------------|---------------------|--------------------|
| LCO@C-600 | 2.8300             | 14.12519           | 97.73               | 4.47                | 3.38               |
| LCO@C-700 | 2.8167             | 14.08632           | 96.85               | 2.35                | 1.36               |
| LCO@C-800 | 2.8205             | 14.10774           | 97.08               | 3.25                | 2.21               |

700, and -800 samples.

Table S2 The fitted results of impedance spectra by the equivalent circuit as inset in Fig. 4g.

|                         | Impedance (Ω)  |              |                 |                |              |                 |                |          |                 |     |              |                 |
|-------------------------|----------------|--------------|-----------------|----------------|--------------|-----------------|----------------|----------|-----------------|-----|--------------|-----------------|
|                         | LCO@C-600      |              | LCO@C-700       |                | LCO@C-800    |                 | LCO-700        |          |                 |     |              |                 |
|                         | R <sub>e</sub> | $R_{\rm sf}$ | R <sub>ct</sub> | R <sub>e</sub> | $R_{\rm sf}$ | R <sub>ct</sub> | R <sub>e</sub> | $R_{sf}$ | R <sub>ct</sub> | Re  | $R_{\rm sf}$ | R <sub>ct</sub> |
| 1 <sup>st</sup> cycle   | 2.9            | 151.9        | 384.8           | 2.59           | 111.7        | 163.3           | 2.8            | 107.9    | 241.4           | 8.3 | 146.9        | 166.2           |
| 100 <sup>th</sup> cycle | 5.1            | 146.2        | 228.2           | 2.8            | 87.2         | 106.1           | 3.3            | 174.9    | 127.2           | 9.0 | 109.1        | 393.6           |
| 200 <sup>th</sup> cycle | 2.3            | 102.8        | 852.1           | 2.4            | 63.4         | 65.2            | 4.0            | 118.7    | 92.2            | 7.7 | 158.2        | 768.9           |

Table S3 Lithium ion diffusion coefficients at various stages after discharged cycling calculated by the

| EIS 1 | results |
|-------|---------|
|-------|---------|

|                         | Li                    | 1)                    |                       |           |
|-------------------------|-----------------------|-----------------------|-----------------------|-----------|
|                         | LCO@C-600             | LCO@C-700             | LCO@C-800             | LCO-700   |
| 1 <sup>st</sup> cycle   | 6.54*10 <sup>-9</sup> | 1.98*10 <sup>-8</sup> | 1.01*10-8             | 3.07*10-9 |
| 100 <sup>th</sup> cycle | 2.95*10-9             | 7.10*10-8             | 1.45*10-8             | 2.84*10-9 |
| 200 <sup>th</sup> cycle | 6.31*10-9             | 6.09*10 <sup>-8</sup> | 1.54*10 <sup>-8</sup> | 2.14*10-9 |

## **References:**

- S1 Q. Yang, J. Huang, Y. Li, Y. Wang, J. Qiu, J. Zhang, H. Yu, X. Yu, H. Li and L. Chen, J. Power Sources, 2018, 388, 65–70.
- S2 R. Gu, Z. Ma, T. Cheng, Y. Lyu, A. Nie and B. Guo, ACS Appl. Mater. Interfaces, 2018, 10, 31271– 31279.

- S3 A. Zhou, Q. Liu, Y. Wang, W. Wang, X. Yao, W. Hu, L. Zhang, X. Yu, J. Li and H. Li, *J. Mater. Chem. A*, 2017, **5**, 24361–24370.
- S4 A. Zhou, Y. Lu, Q. Wang, J. Xu, W. Wang, X. Dai and J. Li, J. Power Sources, 2017, 346, 24-30.
- S5 Z. Yang, Q. Qiao and W. Yang, *Electrochim. Acta*, 2011, 56, 4791–4796.
- S6 J.-H. Shim, J. Lee, S. Y. Han and S. Lee, *Electrochim. Acta*, 2015, 186, 201–208.