Supporting Information

Targeted synthesis and reaction mechanism discussion of Mo₂C based insertion-

type electrodes for advanced pseudocapacitors

Yuanyuan Zhu^{†a, e}, Xu Ji^{†b}, Lufeng Yang^c, Jin Jia^d, Shuang Cheng^{a,*}, Hailong Chen^c,

Zhong-Shuai Wu^e, Donata Passarello^f and Meilin Liu^g

^a New Energy Research Institute, School of Environment and Energy, South China

University of Technology, Guangzhou, 510006, People's Republic of China.

^b College of Automation, Zhongkai University of Agriculture and Engineering,

Guangzhou, 510225, People's Republic of China

^c The Woodruff School of Mechanical Engineering, Georgia Institute of Technology,
771 Ferst Drive, Atlanta, GA 30332-0245, USA.

^d Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan 250011, People's Republic of China.

^e Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China.

^f Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA

^g School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA.

[†] Yuanyuan Zhu and Xu Ji contributed equally to this work.

* Corresponding author. E-mail address: escheng@scut.edu.cn (S. Cheng).

Fig. S1 TGA curve of the as-prepared N-Mo₂C/C sample.

To determine the carbon content of the N-Mo₂C/C composite, thermogravimetric analysis (TGA) was performed in air flow from 30 to 700 °C. Two weight loss districts can be observed in Fig. S1, the weight loss (m₁, 98 wt%) originate from the evaporation of adsorbed water below 200 °C; the following stage (m2, 126 wt%) from 300 to 700 °C corresponds to the combustion of surface carbon and the phase transition of MoO₂ MoO₃. Thus, the content for Mo₂C (m₂ to is $(wt\%)/M(MoO_3)/2 \times M(Mo_2C))/m_1(wt\%) \times 100 wt\% = 91 wt\%$. Therefore, the carbon content in the N-Mo₂C/C composite was 9%.

Fig. S2 XPS survey spectrum of N-Mo₂C/C sample consists of Mo 3d, C 1s, N 1s,

Mo $3p_{1/2}$, and O 1s species.

Fig. S3 CV and GCD curves after long-term cycling: (a) and (b) CV curves at different scan rates from 1 to 2000 mV s⁻¹; (c) and (d) GCD curves at different current densities from 0.5 to 200 A g^{-1} .

Fig. S4 (a,b) SEM morphology of N-Mo₂C/C nanobelts electrodes after long-term cycling.

Fig. S5 (a-d) TEM images of N-Mo₂C/C nanobelts electrode after long-term cycling.

Fig. S6 *Operando* synchrotron XRD patterns of N-Mo₂C/C nanobelts electrode under open circuit voltage, full discharge and charge.

Electrodes	Electrolyte	Capacitance	Current Density	Cycling	Ref.
			/ Scan rate	performance	
R-MoO _{3-x}	LiClO ₄	550 C g ⁻¹	100 mV s ⁻¹	10000	1
				(~76%)	
GC/MoO _{3-x}	Na_2SO_4	307 C g ⁻¹	1 A g ⁻¹	-	2
MoO ₂ /GO	LiClO ₄	1097 C g ⁻¹	2 mV s ⁻¹	10000	3
		390 C g ⁻¹	1000 mV s ⁻¹	(~80%)	
MoO ₂	LiClO ₄	70 F g ⁻¹	4 A g ⁻¹	5000	4
		(63 C g ⁻¹)		(~72%)	
MoS ₂ @BPC	NaClO ₄	179.8 mAh g ⁻¹	15 A g ⁻¹	5000	5
		(647 C g ⁻¹)		(73%)	
Mo ₂ C (52.6%)/GR	LiPF ₆	310 mAh g ⁻¹	1.6 A g ⁻¹	100	6
		(1116 C g ⁻¹)		(~89%)	
Mo _{0.654} C@CNS	LiPF ₆	495 mAh g ⁻¹	5 A g ⁻¹	680	7
		(1782 C g ⁻¹)		(<100%)	
Mo ₂ C nanosheets	Na PF ₆	85.2 mAh g ⁻¹	2 A g ⁻¹	1200	8
		(306.7 C g ⁻¹)		(<100%)	
MnO ₂ -Mo ₂ C NFs	Na ₂ SO ₄	302 F g ⁻¹	1 A g ⁻¹	5000	9
		(302 C g ⁻¹)		(92.6%)	
Mo ₂ C/NCF	КОН	1250 F g ⁻¹	1 A g ⁻¹	5000	10
		(750 C g ⁻¹)		(<100%)	
MoSe ₂ -Mo ₂ C	КОН	285 F g ⁻¹	15 A g ⁻¹	10000	11
		(285 C g ⁻¹)		(98%)	
N-Mo ₂ C/C	LiClO ₄	1139 C g ⁻¹	1 mV s^{-1}	15000 (>100%)	This work
		151 C g ⁻¹	2000mV s ⁻¹		
		1166 C g ⁻¹	1 A g ⁻¹		

Table S1. Comparison of the electrochemical performances of N-Mo₂C/C with previously reported Mo-based electrodes.

References

- H. S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins and B. Dunn, *Nat. Mater.*, 2017, 16, 454-460.
- J. Yang, X. Xiao, P. Chen, K. Zhu, K. Cheng, K. Ye, G. Wang, D. Cao and J. Yan, *Nano Energy*, 2019, 58, 455-465.
- Y. Zhu, X. Ji, S. Cheng, Z. Y. Chern, J. Jia, L. Yang, H. Luo, J. Yu, X. Peng, J. Wang, W. Zhou and M. Liu, *ACS Nano*, 2019, 13, 9091-9099.
- 4. D. V. Pham, R. A. Patil, C.-C. Yang, W.-C. Yeh, Y. Liou and Y.-R. Ma, *Nano Energy*, 2018, **47**, 105-114.
- Y. Li, H. Wang, B. Huang, L. Wang, R. Wang, B. He, Y. Gong and X. Hu, J. Mater. Chem. A, 2018, 6, 14742-14751.
- 6. B. Wang, G. Wang and H. Wang, J. Mater. Chem. A, 2015, **3**, 17403-17411.
- J. Zhu, K. Sakaushi, G. Clavel, M. Shalom, M. Antonietti and T. P. Fellinger, J. Am. Chem. Soc., 2015, 137, 5480-5485.
- J. Li, Q.-Q. Yang, Y.-X. Hu, M.-C. Liu, C. Lu, H. Zhang, L.-B. Kong, W.-W. Liu, W.-J. Niu, K. Zhao, Y.-C. Wang, F. Cheng, Z. M. Wang and Y.-L. Chueh, *ACS Sustainable Chem. Eng.*, 2019, 7, 18375-18383.
- M. Shi, L. Zhao, X. Song, J. Liu, P. Zhang and L. Gao, ACS Appl. Mater. Interfaces, 2016, 8, 32460-32467.
- 10. K. J. Samdani, D. W. Joh and K. T. Lee, J. Alloy. Compo., 2018, 748, 134-144.
- D. Vikraman, S. Hussain, K. Karuppasamy, A. Feroze, A. Kathalingam, A. Sanmugam, S.-H. Chun, J. Jung and H.-S. Kim, *Appl. Catal. B-Environ.*, 2020, 264, 118531.