# Intermolecular Electron Modulating by P/O Bridging in IrO<sub>2</sub>-CoPi Catalyst to Enhance Hydrogen Evolution Reaction

Xiannuo Zheng <sup>a</sup>, Huagui Nie<sup>\*a</sup>, Yingxin Zhan <sup>a</sup>, Xuemei Zhou <sup>a</sup>, Huan Duan <sup>b</sup>, Zhi Yang<sup>\*a</sup>

<sup>a</sup>Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, PR China Email: <u>huaguinie@126.com</u>, <u>yang201079@126.com</u>

<sup>b</sup> School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.

## **Experimental Section**

#### **Preparation of CNTs-Modified Electrode**

Prior to coating, bare glassy carbon electrodes (GCE, 3 mm diameter) were polished by 0.3  $\mu$ m and 0.05  $\mu$ m alumina slurry on a microcloth followed by rinse with ultrapure water. Subsequently, the electrodes were sonicated in ethanol and dried by mild nitrogen flow. 2 mg of carbon nanotubes (CNTs, purchased from Cnano Technology, Beijing) were dispersed in 500  $\mu$ L of the mixture of ethanol/ultrapure water (4:1, v/v) with the aid of ultrasonic agitation to form a homogeneous ink. 8  $\mu$ L of the ink (approximately 0.032 mg of catalyst) was dropped onto the GCE.

## Synthesis of CoPi-CNTs Nanocomposites

The CoPi-CNTs hybrid catalyst were prepared through a cyclic voltammetry (CV) electrochemical deposition method. The CNTs-modified electrode as working electrode, a graphite as counter electrode, and a saturated calomel reference electrode (SCE) were firstly immersed in a 0.03 M  $C_{10}H_{12}CoN_2Na_2O_8$  aqueous solution containing with NaH<sub>2</sub>PO<sub>2</sub>•H<sub>2</sub>O and H<sub>3</sub>BO<sub>3</sub>, and then treated by a potential cycling range from -1.8 to +0.5 V at a scan rate of 50 mV s<sup>-1</sup>. The obtained CoPi-CNTs modified electrode was gently rinsed with deionized water and dried under vacuum at room temperature. For comparison, the parallel experiments using various deposition cycles were also carried out under the same synthesis conditions.

#### Synthesis of IrO<sub>2</sub>-CoPi-CNTs Nanocomposites

The IrO<sub>2</sub>-CoPi-CNTs hybrid catalysts were prepared through a sacrificial counter electrode method. Typically, the electrodeposited experiments were performed in 0.5

M H<sub>2</sub>SO<sub>4</sub> solution by a potential cycling from -0.6 to -1.2 V at a scan rate of 100 mV  $s^{-1}$  using a three-electrode system consisting of the CoPi-CNTs-modified working electrode, an iridium (Ir) wire counter electrode, and a saturated calomel reference electrode (SCE). After deposition, the obtained IrO<sub>2</sub>-CoPi-CNTs-modified electrode was rinsed with deionized water and dried overnight at room temperature. The parallel experiments using various deposition cycles were synthesized under the same conditions. For comparison, the CNTs-modified GCE was used as the working electrode for the preparation of the IrO<sub>2</sub>-CNTs hybrid catalyst by the same experimental conditions.

#### Characterization

X-ray photoelectron spectroscopy (XPS) measurements were carried out with an ultra high-vacuum setup, equipped with a monochromatic Al Kα X-ray source (10 mA, 15 kV) and a high resolution Gammadata-Scienta SES 2002 analyzer. Scanning electron microscopy (SEM) images were obtained from a JSM-6700 (spot 3.0, 15 kV). Transmission electron microscopy (TEM), high resolution TEM (HRTEM), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDS) elemental mapping were recorded with a JEOL-2100F instrument (200 kV). Inductively coupled plasma optical emission spectroscopy (ICP-OES) was performed on VISTA-MPX.

## **Electrochemical Measurements**

All of electrochemical measurements were performed in 0.5 M H<sub>2</sub>SO<sub>4</sub> solutions on CHI760 electrochemical workstation (CH Instrument Inc.) at room temperature through a three-electrode system consisting of the catalysts-modified working electrode, a graphite counter electrode, and a KCl saturated calomel reference electrode (SCE). The SCE was calibrated with respect to reversible hydrogen electrode (RHE) for the measurements. In our work, the potentials were obtained versus the reversible hydrogen electrode (RHE) through the equation  $E_{RHE} = E_{SCE} +$ 0.267 + 0.059 pH in 0.5 M H<sub>2</sub>SO<sub>4</sub>. Linear sweep voltammetry (LSV) was recorded at a scan rate of 5 mV s<sup>-1</sup>. The chronoamperometry curve was recorded over 100 h at  $\eta =$ 100 mV (vs. RHE). To estimate the double-layer capacitance, cyclic voltammetry (CV) was performed in the potential range from 0.1 to 0.3 V (vs. RHE) with various scan rates (20, 40, 80, 160, 200 mV s<sup>-1</sup>). To assessment of the HER activities of hybrids catalysts, Tafel plots were obtained from LSV curves. According to the Tafel equation ( $\eta = b \log (1 + a)$ ), the Tafel slope (b) can be obtained by fitting the linear portion of the Tafel plots.<sup>1</sup> Electrochemical impedance spectroscopy (EIS) measurements were carried over the frequency range from 100 kHz to 0.01 Hz at an open circuit potential with an amplitude potential of 5 mV. All data were reported without iR compensation.

#### **TOF** calculation

The turnover frequency (TOF) of the synthesized catalyst was estimated according to this equation: TOF = I/(2nF), where I represents the current density of the catalysts through LSV measurement obtained in 0.5 M H<sub>2</sub>SO<sub>4</sub>, F is the Faraday constant (C mol<sup>-1</sup>), n is the number of the active sites (mol) of the catalysts.<sup>2</sup> To obtain the value of n, CV measurements were performed in 1.0 M PBS electrolyte (pH 7.0) within the

potential from -0.2 to 0.6 V (vs. RHE) at a scan rate of 50 mV s<sup>-1</sup>. Assuming one electron redox process, the integrated charge over the whole potential range was divided by two. Then, the value was divided by the Faraday constant to get the number of active sites for different samples.

#### **DFT calculation**

All calculations were performed by utilizing the all-electron code Fritz-Haber Institute *ab initio* molecular simulations package (FHI-aims).<sup>3</sup> The exchangecorrelation potentials were investigated using the generalized gradient approximation (GGA) parameterized by Perdew, Burke, and Ernzerholf (PBE).<sup>4</sup> The "tight" species defaults for H, O, P, Co and Ir elements were selected in our work. To account for the weak non-covalent intermolecular interaction, these functionals were augmented by the van der Waals scheme of Tkatchenko and Scheffler.<sup>5</sup> The IrO<sub>2</sub> (110) surface was modeled by a periodic stack of asymmetric slabs with adsorbates only on one side of the slab. The slab was a  $(1 \times 2)$  surface model having the thickness of three O-Ir-O repeat units, equivalent to 9 atomic layers (Fig. S12a and b in Supporting Information). The upper five atomic layers were allowed to relax in all structural optimizations. A vacuum region of 20 Å was introduced to curtail interactions between the slabs along the [110] direction. A  $(5 \times 5 \times 1)$  Monkhorst-Pack mesh of kpoints was adopted to sample the Brillouin zone of the  $(1 \times 2)$ -IrO<sub>2</sub> (110) surface model. A larger supercell (3×4 slab model) was adopted to simulate the CoPi-IrO<sub>2</sub> complex. A schematic illustration of the CoPi cocatalyst was presented in Fig. S12c and d (Supporting Information), which suggested that phosphates was associated with

the Co-oxide fragments (containing 7 Co atoms). The convergence threshold was set to be  $10^{-4}$  eV in energy and  $10^{-2}$  eV·Å<sup>-1</sup> in force.

In acidic media, the key reaction steps of HER process were mainly composed of hydrogen intermediate formation and H<sub>2</sub> generation, which could be expressed as:

Volmer step: 
$$H^+ + e^- + *cat \rightarrow H\text{-}cat$$
 (1)

Heyrovsky step: H-cat + H<sup>+</sup> + e<sup>-</sup> 
$$\rightarrow$$
 H<sub>2</sub>  $\uparrow$  + \*cat (2)

Tafel step: 
$$2H\text{-cat} \rightarrow H_2 \uparrow +2^*\text{cat}$$
 (3)

in which \* denoted the active adsorption site in the catalyst.<sup>6,7</sup> The binding energy ( $\Delta E_b$ ) of hydrogen was defined as the energy difference between catalyst with H adsorbed ( $E_{H-cat}$ ) and the summation of the isolated H<sub>2</sub> molecules ( $E_{H^2}$ ) and catalyst substrate ( $E_{*cat}$ ):

$$\Delta E_b = E_{H-cat} - E_{*cat} - 1/2E_{H_2}$$
(4)

where,  $E_{H-cat}$  was the total energy of the adsorbed system,  $E_{H_2}$  and  $E_{*cat}$  were the total energy of an isolate hydrogen molecule in the gas phase and the catalyst computed in the work, respectively.

The free energy of  $H^+ + e^-$  was almost equal to be half the formation energy of  $H_2$  at standard conditions (pH 0, *p*=1 bar and T=298.15 K). The reaction free energy was then calculated following the equation:

$$\Delta G = \Delta E_b + \Delta Z P E - T \Delta S \tag{5}$$

where,  $\Delta E_b$  was obtained from prior DFT calculations, the differences in zero point energies ( $\Delta ZPE$ ) and the change in entropic contribution ( $\Delta S$ ) were calculated by using computed vibrational frequencies and standard tabulated values for the reactants and products (http://www.webbook.nist.gov/chemistry/).8



**Fig. S1** Polarization curves (a) of CoPi-CNTs hybrids in various deposition cycles and the corresponding Tafel plots (b).



**Fig. S2** Polarization curves (a) of IrO<sub>2</sub>-CoPi-CNTs hybrids in various deposition cycles and the corresponding Tafel plots (b).



**Fig. S3** SEM images of CoPi-CNTs hybrid catalyst of different deposition cycles. (a) CoPi<sub>20cyc</sub>-CNTs hybrids catalyst. (b) CoPi<sub>30cyc</sub>-CNTs hybrids catalyst. (c) CoPi<sub>40cyc</sub>-CNTs hybrids catalyst.



Fig. S4 Characterizations of CoPi-CNTs hybrid catalyst: (a-b) TEM images.



Fig. S5 SEM images of IrO<sub>2</sub>-CoPi-CNTs hybrid catalyst of different deposition cycles.
(a) IrO<sub>2</sub>-CoPi-CNTs-10000cyc hybrids catalyst. (b) IrO<sub>2</sub>-CoPi-CNTs-12000cyc hybrids catalyst. (c) IrO<sub>2</sub>-CoPi-CNTs-14000cyc hybrids catalyst.



**Fig. S6** SEM images of IrO<sub>2</sub>-CNTs hybrid catalyst of different deposition cycles. (a) IrO<sub>2</sub>-CNTs-10000cyc hybrids catalyst. (b) IrO<sub>2</sub>-CNTs-12000cyc hybrids catalyst. (c) IrO<sub>2</sub>-CNTs-14000cyc hybrids catalyst.



Fig. S7 Characterizations of IrO2-CNTs hybrid catalyst: (a-c) TEM images, (d) STEM

and the corresponding EDS element maps.



**Fig. S8** Standard CV curves of different samples and corresponding  $C_{dl}$  with different scan rates. (a) and (b) CoPi-CNTs, (c) and (d) IrO<sub>2</sub>-CNTs, (e) and (f) IrO<sub>2</sub>-CoPi-CNTs hybrid catalyst.



**Fig. S9** The Nyquist plots for the CoPi-CNTs, IrO<sub>2</sub>-CNTs, and IrO<sub>2</sub>-CoPi-CNTs hybrid catalysts(fitted curves as solid lines and experimental points as symbols). The inset shows the equivalent circuit diagram.



**Fig. S10** Characterizations of IrO<sub>2</sub>-CoPi-CNTs hybrid catalyst: (a) SEM images of IrO<sub>2</sub>-CoPi-CNTs hybrid catalyst. (b) SEM and (c) TEM images of IrO<sub>2</sub>-CoPi-CNTs hybrids catalyst after 100 h chronoamperometry i-t stability test.



Fig. S11 CVs obtained for CNTs,  $IrO_2$ -CNTs, CoPi-CNTs, and  $IrO_2$ -CoPi-CNTs hybrid catalysts in 1.0 M PBS (pH 7.0) at a scan rate of 50 mV s<sup>-1</sup>.



**Fig. S12** (a) Top and (b) front views of the  $(1 \times 2)$ -IrO<sub>2</sub> (110) slab. The red and navy spheres were O and Ir atoms, respectively. (c) Top and (d) front views of CoPi polyhedral model. CoO<sub>6</sub> were presented as light blue octahedra, PO<sub>4</sub> were denoted as pink tetrahedra, and the sticks meant H-O bonds, respectively.



**Fig. S13** Calculated free-energy diagram for hydrogen evolution of s-IrO<sub>2</sub> (110) surface (a) and CoPi cluster (b) at pH 0. Binding configurations for hydrogen ions at different adsorbed sites of s-IrO<sub>2</sub> (110) surface (c~e) and CoPi polyhedral cluster (f~h). The white, red, and navy spheres were H, O, and Ir atoms, the sticks meant H-O bonds, CoO<sub>6</sub> were presented as light blue octahedra, and PO<sub>4</sub> were denoted as pink tetrahedra, respectively.

#### **Supplementary note 1:**

The stoichiometric iridium dioxide (110) surface  $[s-IrO_2 (110)]$  presented three different types of exposed atoms, 2-fold coordinated bridge oxygen (Obr), 3-fold coordinated surface oxygen (Osurf) and 5-fold coordinatively-unsaturated iridium  $(Ir_{cus})$ .<sup>9-12</sup> The (110) crystal plane was one of the dominative facets of IrO<sub>2</sub>, which had been characterized in recent studies. Fig. S12a and b displayed the atomic model of s- $IrO_2$  (110) surface. The hydrogen ions could attach to the surface via interacting with each  $O_{br}$ ,  $O_{surf}$  and  $Ir_{cus}$  atoms, and the binding energy ( $\Delta E_b$ ) was -0.78, +0.34 and -0.45 eV, respectively. The weak chemical interaction between hydrogen adatoms and the Osurf sites could damage the surface lattice seriously, making them less prone to adsorption. The investigation also showed that the bindings between hydrogen and Obr/Ircus atoms on the surface dominated the dynamics for negative values of the pairing strength, resulted in an H-terminated surface at pH 0. The reaction free energy and geometric structures were summarized in Fig. S13a and c~e. The Ircus atoms showed as the mainly active sites with the value of  $\Delta G_{\rm H}$  = -0.29 eV, which was close to the optimal Pt(111) value ( $\Delta G_{H}$ =-0.08 eV) and was reactive to a certain degree. Unfortunately, the Obr sites exhibited large negative hydrogen adsorption free energies ( $\Delta G_H$ ) as low as -0.61 eV, which might hinder the diffusion of H intermediates and lead to sluggish HER kinetics.

## **Supplementary note 2:**

In this work, we also calculated the adsorption of hydrogen on the CoPi nanoclusters for comparison, the possible structural motif for CoPi was showed in Fig. S12c and d, which the coordination number of CoPi was about 2.33 and the remaining terminal ligands of Co-oxide clusters might be water molecules and hydroxyls.<sup>13-15</sup> The hydrogen ions could be anchored onto the cluster surface through locating at the  $O_{2c}$ ,  $O_{3c}$  and hydroxyl sites, Fig. S13b and f~h listed the Gibbs free energies and optimized geometric structures of hydrogen adsorptions. And the binding energy ( $\Delta E_b$ ) was -0.57, -0.12 and -0.91 eV, respectively, most tended to adsorb at the hydroxyl sites, generating a H<sub>2</sub>O molecule. Then we used Equations (5) to convert the data to Gibbs free energy, in turn, they were -0.26, +0.27 and -0.62 eV. On the other hand, the formed H<sub>2</sub>O molecules would be decomposed since the Co-OH<sub>2</sub> tended to be oxidized and deprotonated to Co-OH and even to Co=O, its adjacent O<sub>2c</sub> and O<sub>3c</sub> sites could contribute to the migration of H\* intermediates because of their moderate free energies. Hence, the CoPi nanoparticles acted as a water dissociation promoter, cleaved HO–H bonds and produced H\* intermediates that then adsorbed on the neighboring catalytic active sites.

| Sample                    | Overpotential<br>@10mAcm <sup>-2</sup> (mV) | Tafel slope<br>(mV dec <sup>-1)</sup> | Loading<br>(mg cm <sup>-2)</sup> | Reference                                      |
|---------------------------|---------------------------------------------|---------------------------------------|----------------------------------|------------------------------------------------|
| 17.7 wt % Ir/SiNW         | 22                                          | 20                                    | 0.339                            | ACS Nano 2019, <b>13</b> , 2786.               |
| PtNi/Pt DNPs              | 21                                          | 23                                    | 0.05                             | J. Mater. Chem. A 2019, 7, 12800.              |
| PtCo/CNFs                 | 63                                          | 28                                    | 0.212                            | Chem. Commun. 2016, <b>52</b> , 990.           |
| N-Co <sub>2</sub> P/CC    | 27                                          | 45                                    | 5                                | ACS Catal. 2019, 9, 3744.                      |
| OsP2@NPC                  | 46                                          | 43                                    | 0.285                            | Chem. Commun. 2019, 55, 4399.                  |
| PANI/CoP HNWs-<br>CFs     | 57                                          | 34.5                                  | 4.5                              | J. Am. Chem. Soc. 2018, <b>140</b> , 5118.     |
| CoP@NC                    | 78                                          | 49                                    | 0.28                             | ACS Catal. 2017, 7, 3824.                      |
| Co <sub>2</sub> P NP      | 103                                         | 58                                    | 0.5                              | Nano Lett. 2016, 16, 4691.                     |
| CoP/CC                    | 38                                          | 51                                    | 5.7                              | J. Am. Chem. Soc. 2014, <b>136</b> , 7587.     |
| CoS <sub>2</sub> NW       | 145                                         | 51.6                                  | 0.25                             | J. Am. Chem. Soc. 2014, <b>136</b> , 10053.    |
| $Zn_{0.1}Co_{0.9}Se_2$    | 140                                         | 49.9                                  | 0.285                            | J. Mater. Chem. A 2017, 5, 17982.              |
| CoSAs/PTF-600             | 94                                          | 50                                    | 0.94                             | J. Mater. Chem. A 2019, 7, 1252.               |
| CoP/NCNTs                 | 79                                          | 49                                    | 0.199                            | J. Mater. Chem. A 2016, 4, 4745.               |
| Mo-CoP                    | 40                                          | 65                                    | 2.5                              | Nano Energy 2018, <b>48</b> , 73.              |
| CoP@NPC                   | 123                                         | 69                                    | 1.17                             | ACS Appl. Mater. Interfaces 2015,<br>7, 28369. |
| Co <sub>2</sub> P Nanorod | 134                                         | 71                                    | 1                                | Nano Energy 2014, 9, 373.                      |
| Urchin-like CoP           | 105                                         | 46                                    | 0.28                             | Nano Lett. 2015, 15, 7616.                     |
| Co-P@PC                   | 72                                          | 49                                    | 1                                | Small 2018, 14, 1702895.                       |
| Co-NG                     | 147                                         | 82                                    | 0.285                            | Nat. Commun. 2015, 6, 8668.                    |
| CoP@NC-NG                 | 135                                         | 59.3                                  | -                                | Small 2018, 14, 1702895.                       |
| 1%Pd–MoS <sub>2</sub>     | 89                                          | 80                                    | 0.222                            | Nat. Commun. 2018, 9, 2120.                    |
| IrCoNi PHNCs              | 68                                          | 34.3                                  | 0.51                             | Adv. Mater. 2017, <b>29</b> , 1703798.         |
| IrO2-CoPi-CNTs            | 29                                          | 27                                    | 0.45                             | This work                                      |

 Table S1. Comparision of HER performances of our sample with other reported
 electrocatalysts in acid media.

| Sample                      | $\mathbf{R}_{s(\Omega)}$ | $\mathbf{R}_{\mathrm{ct}(\Omega)}$ | CPE <sub>(µMho)</sub> |
|-----------------------------|--------------------------|------------------------------------|-----------------------|
| CoPi-CNTs                   | 52.6                     | 14.1                               | 19.2                  |
| IrO <sub>2</sub> - CNTs     | 57.1                     | 8.2                                | 27.5                  |
| IrO <sub>2</sub> -CoPi-CNTs | 52.8                     | 5.68                               | 52.2                  |

**Table S2.** The impedance parameters derived by fitting the EIS responses on the different composites in  $H_2SO_{4_{\circ}}$ 

## **References:**

- 1 J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Adv. Mater. 2017, 29, 1605838.
- 2 J. Tian, Q. Liu, A. M. Asiri, X. Sun, J. Am. Chem. Soc. 2014, 136, 7587.
- 3 V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, *Comput. Phys. Commun.* 2009, **180**, 2175.
- 4 G. Kresse, D. Joubert., *Phys. Rev.* B 1999, **59**, 1758.
- 5 A. Tkatchenko, M. Scheffler, *Phys Rev Lett* 2009, **102**, 073005.
- 6 X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148.
- 7 Y. Shi, B. Zhang, Chem. Soc. Rev. 2016, 45, 1529.
- J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov,
   U. Stimming, J. *Electrochem. Soc.* 2005, 152, J23.
- 9 Y. Tsuji, K. Yoshizawa, J. Phys. Chem. C 2018, 122, 15359.
- 10 O. Matz, M. Calatayud, J. Phys. Chem. C 2017, 121, 13135.
- 11 M. J. S. Abb, B. Herd, H. Over, J. Phys. Chem. C 2018, 122, 14725.
- 12 Z. Liang, T. Li, M. Kim, A. Asthagiri, J. F. Weaver, Science 2017, 356, 299.
- 13 M. Risch, D. Shevchenko, M. F. Anderlund, S. Styring, J. Heidkamp, K. M. Lange, A. Thapper, I. Zaharieva, Int. J. *Hydrogen Energy* 2012, 37, 8878.
- M. Yoshida, T. Mineo, Y. Mitsutomi, F. Yamamoto, H. Kurosu, S. Takakusagi,K. Asakura, H. Kondoh, *Chem. Lett.* 2016, 45, 277.
- 15 S. Koroidov, M. F. Anderlund, S. Styring, A. Thapper, J. Messinger, *Energy Environ. Sci.* 2015, 8, 2492.