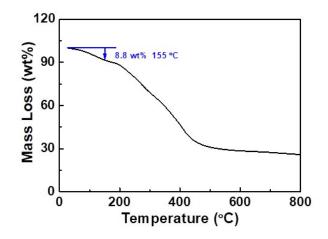
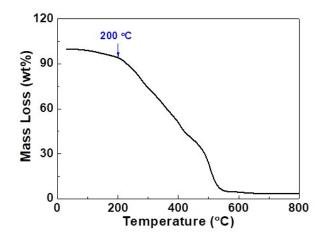
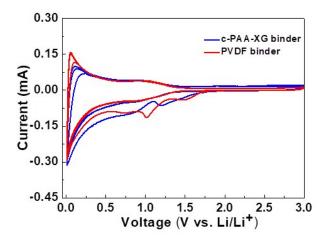
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

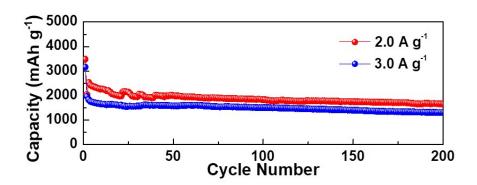
Supporting Information

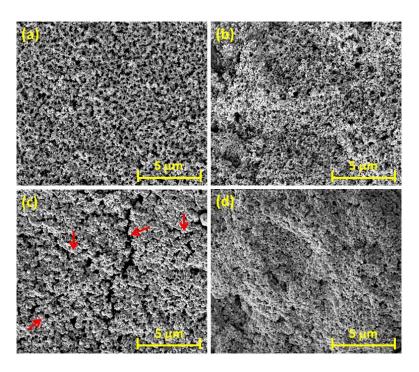
A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes

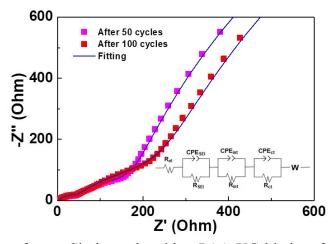
Dong Wang,^{ac‡} Qian Zhang,^{ac‡} Jie Liu,^{*ab} Erying Zhao,^d Zhenwei Li,^{ac} Yu Yang,^{ac} Ziyang Guo,^{ac} Lei Wang^{*ac} and Shanqing Zhang^e

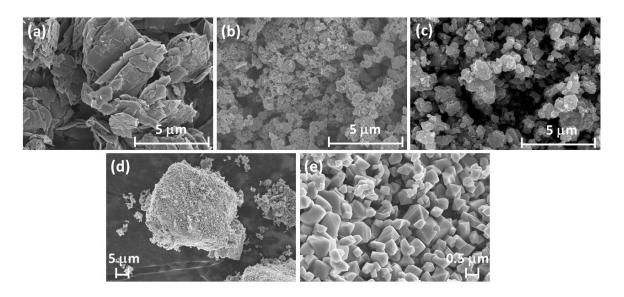
^aTaishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, State Key Laboratory Base of Eco-chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China E-mail: jie.liu@qust.edu.cn (J. Liu), inorchemwl@126.com (L. Wang) ^bCollege of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China ^cCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China ^dSchool of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China ^eCentre for Clean Environment and Energy, Environmental Futures Research Institute, School of Environment and Science, Griffith University, QLD 4222, Australia [‡]These authors contributed equally.


Fig. S1 TGA curve of m-PAA-XG under N_2 flow with a heating rate of 10 °C min⁻¹.


Fig. S2 TGA curve of c-PAA-XG under air flow with a heating rate of 10 °C min⁻¹, showing the high thermal stability (up to 200 °C) of c-PAA-XG under air condition.


Fig. S3 Similar CV curves of PVDF and c-PAA-XG binders at 0.2 mV s⁻¹, showing the high electrochemical stability of c-PAA-XG binder. The electrodes consist of binders and super P conductive carbon with a mass ratio of 1:1.


Fig. S4 Stable cycling performance of nano-Si electrodes with c-PAA-XG binders at 2.0 and 3.0 A g^{-1} (the first cycle was at 400 mA g⁻¹).

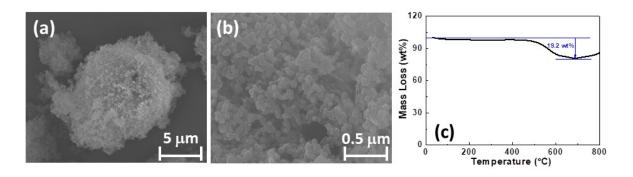

Fig. S5 SEM images of nano-Si electrodes with PVDF binder (a) before cycling and (c) after the first charge and discharge processes, and with c-PAA-XG binder (b) before cycling and (d) after the first charge and discharge processes.

Fig. S6 Nyquist plots of nano-Si electrode with c-PAA-XG binder after 50 cycles and after 100 cycles. Inset is the fitting equivalent circuit, in which R_{SEI} is assigned to SEI film resistance, R_{int} is assigned to interphase electronic contact resistance, and R_{ct} is assigned to charge transfer resistance.

Fig. S7 SEM images of (a) graphite micro-flakes, two kinds of LiFePO₄ nano-particles: (b) LiFePO₄-1 and (c) LiFePO₄-2, and (d, e) LiMn₂O₄ nano/micro-particles.

Fig. S8 (a, b) SEM images, and (c) TGA curve with a heating rate of 10 °C min⁻¹ under air flow of as-prepared nano/micro-Si/C composite.

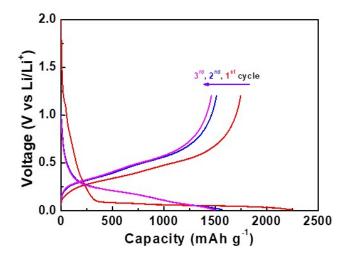


Fig. S9 Charge-discharge curves of Si/C anode with a high loading of 7.1 mg cm⁻².

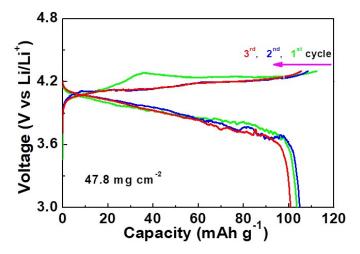
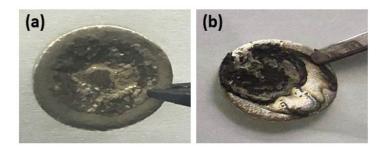



Fig. S10 Charge-discharge curves of $LiMn_2O_4$ cathode with a loading of 47.8 mg cm⁻² at 0.03 C.

Fig. S11 Digital photos of Li anodes from the cells with: (a) graphite anode with a loading of 27.4 mg cm⁻² after the 25th charging process, and (b) LiFePO₄ cathode with a loading of 37.8 mg cm⁻² after the 22^{nd} charging process.

Ref. ^a	Active material loading (mg cm ⁻²)	Reversible areal capacity ^b (mAh cm ⁻²)
This work	18.3	27.7
13	1.2	1.52
22	1.1	3.2
27	0.5-0.7	1.8
46	6.2	3.2
47	4.9	~8.0
48	8.2	3.4
49	8.5	4.0
50	0.6	1.5
51	1.7	~4.2
52	0.9	2.8
53	0.35-0.5	1.1
54	0.5	1.1

Table S1 Comparison of the active material loading and areal capacity of Si-based anodes forLi-ion batteries in recently published excellent studies.

^a The references are listed in the main text

^b The highest reversible areal capacity in the references