Supporting Information

Co Nanoparticles Combined with Nitrogen-Doped Graphitic Carbon Anchored in Carbon Fibers as a Self-standing Air Electrode for Flexible Zinc-Air Batteries

Yangshen Chen^a, Wenhui Zhang^a, Zeyu Zhu^a, Lulu Zhang^a, Jiayi Yang^a, Huanhuan Chen^a, Bing Zheng^a, Sheng Li^a, Weina Zhang^a, Jiansheng Wu^{*a}, Fengwei Huo^{*a}

 Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China

Emails: iamjswu@njtech.edu.cn, iamfwhuo@njtech.edu.cn

The potentials (vs. Ag/AgCl) in this work were converted to RHE by using the Nernst equation¹: $(E_{RHE} = E_{Ag/AgCl} + 0.197 + 0.059 \text{ pH})$

Fig. S1. The XRD pattern of ZIF-67@PAN and ZIF-67 simulation.

Fig. S2. (a-b) TEM images and (c-d) HRTEM images of Co@NPCFs

Fig. S3. (a) HRTEM images of Co@NPCFs and (b) TEM image of Co@NCFs.

Fig. S4. XRD patterns of NCFs and Co@NCFs.

Fig. S5. The photographs of (a) Co(AC)₂/PAN (b) ZIF-67@PAN (c-d) Co@NPCFs.

Fig. S6. TGA data of the Co@NPCFs.

Fig. S7. CV curves of Co@NPCFs in O_2 - and N_2 - saturated 0.1 M KOH solution.

Fig. S8. (a) ORR and (b) OER chronoampermetric responses of Co@NPCFs at a constant potential of 0.7 V and 1.6 V, respectively.

Fig. S9. The photographs of liquid-state ZABs mould.

Fig. S10. Galvanostatic cycling stability of the liquid-state ZAB based upon Pt/C+RuO₂ at 5 mA cm⁻².

Table 1

Catalyst
$$\Delta E$$

(V)Power
density
(mW cm^2)Discharge stability
(liquid state)Discharge stability
(solid state)Ref

Co@NPCFs	0.97	91.87	80 h at 5 mA cm ⁻²	5 h at 3 mA cm ⁻²	Present work
NCNF-1000	1.02	185	83 h at 10 mA cm ⁻²	6 h at 2 mA cm ⁻²	[2]
Co ₃ FeS _{1.5} (OH) ₆	0.87	113.1	36 h at 2 mA cm ⁻²	-	[3]
C0 ₃ O ₄ /N- rGO nanosheets	0.93	-	-	25 h at 3 mA cm ⁻²	[4]
DN-CP@G	0.99	135	250 cycles at 5 mA cm ⁻²	180 cycles at 1 mA cm ⁻²	[5]
Ni ₃ Fe/N-C sheets	0.84	-	420 h at 10 mA cm ⁻²	-	[6]
PCN-CFP	0.96	-	50 h at 20 mA cm ⁻²	-	[7]
Fe-N _x -C	0.92	96.4	300 h at 5 mA cm ⁻²	120 h at 1 mA cm ⁻²	[8]

Reference

- 1. B. Chen, X. He, F. Yin, H. Wang, D.-J. Liu, R. Shi, J. Chen and H. Yin, *Adv. Funct. Mater.*, 2017, **27**. 1700795.
- 2. Q. Liu, Y. Wang, L. Dai and J. Yao, *Adv Mater*, 2016, **28**, 3000-3006.
- 3. H. F. Wang, C. Tang, B. Wang, B. Q. Li and Q. Zhang, *Adv Mater*, 2017, **29**, 1702327.
- 4. Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu, X. Han, Y. Deng, W. Hu and J. Lu, *Adv. Mater.*, 2018, **30**, 1703657.
- 5. C. Hang, J. Zhang, J. Zhu, W. Li, Z. Kou and Y. Huang, *Adv. Energy Mater.*, 2018, **8**, 1703539.
- 6. G. Fu, Z. Cui, Y. Chen, Y. Li, Y. Tang and J. B. Goodenough, *Adv. Energy Mater.*, 2017, **7**, 1601172.
- 7. T. Y. Ma, J. Ran, S. Dai, M. Jaroniec and S. Z. Qiao, *Angew. Chem. Int. Ed.*, 2015, **54**, 4646-4650.
- 8. J. Han, X. Meng, L. Lu, J. Bian, Z. Li and C. Sun, Adv. Funct. Mater., 2019, 1808872.