# Plasmonically driven photocatalytic hydrogen evolution activity of Ptfunctionalized Au@CeO<sub>2</sub> core-shell under visible light

Dung Van Dao,<sup>†,‡</sup> Thuy T.D. Nguyen,<sup>‡</sup> Thanh Duc Le,<sup>‡</sup> Seung-Hyeon Kim,<sup>§</sup> Jin-Kyu Yang,<sup>§</sup> In-Hwan Lee,<sup>\*,</sup> and Yeon-Tae Yu,<sup>\*,‡</sup>

<sup>+</sup> Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam

<sup>+</sup> Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Chonbuk National University, Jeonju 54896, South Korea

<sup>§</sup> Department of Optical Engineering, Kongju National University, Cheonan 31080, Republic of Korea

Department of Materials Science and Engineering, Korea University, Seoul 02841, South Korea

#### **Experimental section**

#### Chemicals

All chemicals were of analytical grade and used without any further purification. Chloroauric acid (99.99%) and cerium (III) nitrate hexahydrate (99.99%) were purchased from Sigma Aldrich. 2-propanol (99.5%), methanol (99.8%), sulfuric acid (98.08%), nitric acid (63.01%), hydrochloric acid (37%), and trisodium citrate hydrate (98%) were supplied by Showa Chemicals. Hydrogen hexachloroplatinate (IV) hydrate (99.9%) was provided by Kojima Chemicals. Sodium carbonate anhydrous (99.00%) was obtained by Duksan Pure Chemicals.

## Hydrothermal synthesis of Au@CeO2-Pt core-shell photocatalyst

The 1.0 mM chloroauric acid (250 mL) was first heated to the boiling point, followed by the addition of a 34 mM trisodium citrate solution (25 mL) as the reducing argent. The color of the resulting suspension became deep violet after 10 s; after 1 min, the blue color abruptly turned into brilliant red, indicating the formation of spherical Au NPs. The solution was maintained at 97°C for 15 min under stirring. Then, it was naturally cooled down to room temperature and the suspension color changed into pink. Next, 10 mL of the as-prepared Au solution was added into distilled water and ultrasonicated for 5 min, followed by the injection of a 5 mM Na<sub>2</sub>CO<sub>3</sub> solution (45 mL) under stirring for 10 min at room temperature and the successive addition of a 5 mM Ce(NO<sub>3</sub>)<sub>3</sub> solution (10 mL) via slow dropping under further stirring for 10 min. The reaction was performed at 90°C for 12 h under stirring and, then, the solution was cooled to room temperature. The color of the as-obtained Au@CeO<sub>2</sub> suspension turned into intense purple, indicating the successful formation of the CeO<sub>2</sub> shell on the Au core.

For the Au@CeO<sub>2</sub>-Pt synthesis, 30 mL of this Au@CeO<sub>2</sub> colloid was ultrasonicated for 10 min, followed by the addition of a 0.1 M Pt<sup>4+</sup> solution (1.0 mL) under stirring for 15 min at room temperature and the

successive injection of a 34 mM trisodium citrate solution (15 mL). The resulting solution was heated at 90 °C for 4 h and, then, cooled to room temperature naturally. Its color turned into brown. After that, the Au@CeO<sub>2</sub>-Pt precipitates were separated by centrifugation at 18,000 rpm for 30 min. Finally, the collected powders were washed with distilled water and absolute ethanol several times and, then, calcined at 500°C in air for 2 h to obtain the desired Au@CeO<sub>2</sub>-Pt core–shell photocatalyst. In addition, a pure CeO<sub>2</sub> photocatalyst was also prepared using the same above-described method without adding Au colloid and Pt salt.

#### Characterization

The morphology of the prepared photocatalysts was investigated via high-resolution transmission electron microscopy (HRTEM) with a JEM-2010 microscope (JEOL) operated at 200 kV. The crystal structure of Au@CeO<sub>2</sub>-Pt was analyzed by using an X-ray diffractometry (XRD) system (D/Max 2005, Rigaku) and Cu K $\alpha$  radiation ( $\lambda$  = 1.54178 Å). The changes in the SPR peaks were observed via ultraviolet–visible light (UV–vis) transmission spectroscopy with an Agilent/HP 8453 spectrophotometer at room temperature. X-ray photoelectron spectroscopy (XPS) was performed with a Multilab 2000 instrument (Thermo Fisher Scientific) and monochromated AI K $\alpha$  radiation (hv = 1,486.6 eV) to investigate the surface chemical states of the elements present in the synthesized photocatalysts; the calibration was based on the binding energies of the adventitious C 1s peak at around 285 eV. The surface areas of the samples were estimated via the nitrogen gas adsorption method so to generate high-quality data by performing the Barrett–Emmett–Teller (BET) technique with a Micromeritics Tristar 3000 analyzer. The spatial distribution of the electric field intensity surrounding the Au@CeO<sub>2</sub>-Pt NPs was calculated through three-dimensional (3D) finite-difference time-domain (FDTD) simulations; the grid size was set at 1 nm (0.001 nm<sup>3</sup> in volume), the incident light wavelength was 550 nm, and the photocatalyst was surrounded by water (n = 1.33). The microstructure of the sample and electrode for photoelectrocatalytic tests was

further examined with a scanning electron microscopy (SEM) instrument (Hitachi, S-4800). The inductively coupled plasma (ICP) spectrometry (ICPS-7500, Shimadzu) was used for measuring the Pt losing after stability tests. The ICP samples were treated with aqua regia at 100 °C for 10 h and were carefully filtered to remove solid components.

## Electrochemical measurements

The Au@CeO<sub>2</sub>-Pt photocatalyst was dispersed in a mixture of distilled water, 2-propanol, and Nafion solution. The resulting slurry was ultrasonicated at room temperature for 1 h to obtain a uniform solution; then, it was sprayed on a carbon cloth substrate to obtain an Au@CeO<sub>2</sub>-Pt/C electrocatalyst. Finally, the as-obtained electrode was dried at 60 °C for 12 h before use. Its electrochemical properties were investigated by using a three-electrode setup (Gamry Instruments Reference 3000, Potentiostat/Galvanostat/ZRA) with and without visible light irradiation from a 300 W xenon lamp (Asahi, Max 303). Electrochemical impedance spectroscopy (EIS) was performed in a 0.25 M H<sub>2</sub>SO<sub>4</sub> + 1 M CH<sub>3</sub>OH electrolyte at 25 °C from 100 kHz to 0.05 Hz. The methanol oxidation reaction (MOR) was conducted in a 0.25 M H<sub>2</sub>SO<sub>4</sub> + 1 M CH<sub>3</sub>OH electrolyte at 25 °C and a sweep rate of 50 mV s<sup>-1</sup>. During the tests, the electrolyte was purged with pure N<sub>2</sub> to prevent the attack from oxygen.

## Photocatalytic hydrogen evolution

The photocatalytic HER of pure CeO<sub>2</sub>, Au@CeO<sub>2</sub> and Au@CeO<sub>2</sub>-Pt was performed via the water displacement technique. First, each photocatalyst (50 mg) was dispersed in a 25% CH<sub>3</sub>OH solution (50 mL) as the sacrificial reagent. Prior to visible light irradiation ( $\lambda > 420$  nm) with a, the solutions were stirred for 30 min in dark condition to ensure the adsorption/desorption equilibrium of the reactants on the surface of the dispersed NPs; concurrently, air was totally removed from the reaction solution by purging with pure nitrogen. The reaction time for each cycle was fixed at 2 h. After the completion of each run,

the photocatalyst was isolated and dried at 100 °C for 2 h before reuse. Then, the so-produced hydrogen gas was analyzed with a gas chromatograph (Shimadzu, GC-2010). The photocatalytic hydrogen production activity for the same samples (CeO<sub>2</sub>, Au@CeO<sub>2</sub>, and Pt-functionalized Au@CeO<sub>2</sub>) is tested at around 550 nm using 50 W xenon lamp to confirm the photocatalytic activity of CeO<sub>2</sub> and Au parts using 50 W xenon lamp. The apparent quantum yield (AQY) efficiencies for hydrogen evolution reaction at around 550 nm for the prepared photocatalysts are calculated by using the following equation:

 $AQY \ efficiency \ [\%] = \frac{Numbers \ of \ evoluted \ hydrogen \ molecules \ x \ 2}{Numbers \ of \ incident \ photons} x \ 100$ 



Fig. S1 (a) TEM analysis of Au, Au@CeO<sub>2</sub>, and Au@CeO<sub>2</sub>-Pt materials.



Fig. S2 (a) High-resolution TEM overlay mapping and (b) EDS spectrum of Au@CeO<sub>2</sub>-Pt photocatalyst.



Fig. S3 TEM image of pure CeO<sub>2</sub>.



Fig. S4 SEM analysis of as-calcined Au@CeO<sub>2</sub>-Pt photocatalysts.



**Fig. S5**. (a) Nitrogen adsorption/desorption isotherms of pure CeO<sub>2</sub>, Au@CeO<sub>2</sub>, and Au@CeO2-Pt photocatalysts and (b) corresponding BET surface areas. (c) Ultraviolet–visible light absorption spectra of Au, Au@CeO2, and Au@CeO2-Pt suspensions. (d) X-ray diffraction pattern of Au@CeO2-Pt; the CeO2, Au, and Pt peaks are marked in yellow, purple, and blue.



**Figure S6**. X-ray photoelectron spectra of  $Au@CeO_2$ -Pt: (a) full survey spectrum and (b) Au 4f, (c) Ce 3d, (d) O 1s, and (e) Pt 4f spectra.



**Fig. S7** Full XPS spectrum of (a) CeO<sub>2</sub> and (b) Au@CeO<sub>2</sub> photocatalysts.

**Table S1.** Summary of the XPS analysis of Au 4f, Ce 3d, and O 1s in pure CeO<sub>2</sub>, Au@CeO<sub>2</sub>, and Au@CeO<sub>2</sub>-Pt photocatalysts.

| Catalysts               | Au+/( Au+ + Au) |                        | Ce <sup>3+</sup> /(Ce <sup>3+</sup> + Ce <sup>4+</sup> ) |                   | Oxygen         |        |            |
|-------------------------|-----------------|------------------------|----------------------------------------------------------|-------------------|----------------|--------|------------|
|                         | Energy          | Percentage<br>(%)      | Energy                                                   | Percentage<br>(%) | Species        | Energy | Percentage |
|                         | (eV)            |                        | (eV)                                                     |                   |                | (eV)   | (%)        |
| CeO <sub>2</sub>        | -               | -                      | 884.40<br>902.80                                         | 18.56             | OL             | 529.11 | 47.64      |
|                         |                 |                        |                                                          |                   | Ov             | 530.66 | 15.24      |
|                         |                 |                        |                                                          |                   | O <sub>C</sub> | 532.38 | 37.12      |
| Au@CeO <sub>2</sub>     | 84.89           | 13.0                   | 885.52<br>31.69<br>903.45                                |                   | OL             | 529.23 | 52.83      |
|                         | 88.97           |                        |                                                          | 31.69             | O <sub>V</sub> | 530.94 | 29.59      |
|                         |                 |                        |                                                          |                   | O <sub>C</sub> | 532.00 | 17.58      |
| Au@CeO <sub>2</sub> -Pt | 85.41           | 35.41<br>12.5<br>39.39 | 884.16<br>903.04                                         | 30.22             | OL             | 529.20 | 53.20      |
|                         | 89.39           |                        |                                                          |                   | Ov             | 530.98 | 28.46      |
|                         |                 |                        |                                                          | O <sub>c</sub>    | 532.32         | 18.34  |            |

 $O_L$ : Lattice oxygen;  $O_V$ : Oxygen vacancy;  $O_C$ : chemisorbed oxygen.



Fig. S8 (a) Au@CeO<sub>2</sub>-Pt slurry and (b) corresponding electrocatalyst for electrochemical property tests.



**Fig. S9** An electrical equivalent circuit used to fit the Nyquist plots:  $R_s$  indicates the solution resistance,  $R_{ct}$  presents the charge transfer resistance, and CPE is a constant phase element.



**Fig. S10** An electrical equivalent circuit used to fit the Nyquist plots:  $R_s$  indicates the solution resistance,  $R_{ct}$  presents the charge transfer resistance, and CPE is a constant phase element.



Fig. S11 MOR activity of (a) CeO<sub>2</sub> and (b) Au@CeO<sub>2</sub> photoelectrocatalysts under dark and light.



**Fig. S12** Comparison of MOR mass activity between CeO<sub>2</sub>/C, Au@CeO<sub>2</sub>/C and Au@CeO<sub>2</sub>-Pt/C electrodes.



**Fig. S13** High-resolution TEM analysis of as-used Au@CeO<sub>2</sub>-Pt after photocatalytic hydrogen evolution stability test: (a) structural image preservation of core-shell photocatalysts and (b) corresponding mapping confirmation.



**Fig. S14** Time-dependent hydrogen production by the pure  $CeO_2$ ,  $Au@CeO_2$ , and Pt-functionalized  $Au@CeO_2$  photocatalysts at 550 nm.



**Fig. S15** The plot of  $(\alpha hv)^2$  vs. photon energy (eV) of pure CeO<sub>2</sub>.



**Fig. S16** UV spectra of solutions before and after photocatalytic hydrogen evolution stability tests using Pt-functionalized Au@CeO<sub>2</sub> core-shell catalysts.



Fig. S17 Comparison of hydrogen evolution performance in methanol-water and methanol solutions for Pt-functionalized Au@CeO<sub>2</sub> core-shell photocatalyst.