**Electronic Supplementary Information (ESI)** 

## Combinational modulations of NiSe<sub>2</sub> nanodendrites by phase engineering and

iron-doping towards efficient oxygen evolution reaction

Jun Zhou,<sup>a</sup> Liwei Yuan,<sup>a</sup> Jingwen Wang,<sup>a</sup> Lingling Song,<sup>a</sup> Yu You,<sup>a</sup> Ru Zhou,<sup>b</sup> Junjun Zhang,<sup>c</sup> Jun Xu\*<sup>a</sup>

<sup>a</sup>School of Electronic Science & Applied Physics, Hefei University of Technology, Hefei, 230009, P.

R. China, E-mail: apjunxu@hfut.edu.cn

<sup>b</sup>School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009,

P. R. China

<sup>c</sup>School of Physics and Materials Engineering, Hefei Normal University, Hefei, 230601, P. R. China.



Fig. S1 SEM image of the p-NiSe<sub>2</sub> sample.



Fig. S2 CV curves of (a)  $m-Ni_{0.94}Fe_{0.06}Se_2$ , (b)  $m-NiSe_2$ , (c)  $p-NiSe_2$  at various scan rates.



**Fig. S3** (a) Linear sweep voltammetry curves of m-Ni<sub>1-x</sub>Fe<sub>x</sub>Se<sub>2</sub> (x=0.03, x=0.06, x=0.12) catalysts recorded at a scan rate of 5 mV s<sup>-1</sup>. (b) The corresponding Tafel plots. (c) Nyquist plots of catalysts at 1.624 V (vs RHE) for the OER in 1M KOH. (d) Linear fitting of the capacitive current density of corresponding catalysts vs. scan rate.



Fig. S4 LSV polarization curves (a) and corresponding Tafel plots (b) of the m-Ni<sub>0.94</sub>Fe<sub>0.06</sub>Se<sub>2</sub>, p-Ni<sub>0.94</sub>Fe<sub>0.06</sub>Se<sub>2</sub> and the commercial IrO<sub>2</sub> catalysts.



**Fig. S5** LSV polarization curves (a), Tafel plots (b), and C<sub>dl</sub> estimation of the m-NiSe<sub>2</sub> and p-NiSe<sub>2</sub> catalysts before activation

The m-NiSe<sub>2</sub> is a better pre-electrocatalyst for OER than the p-NiSe<sub>2</sub>. LSV curves of the two catalysts before activation (i.e., initial CV cycling in the electrolyte) were obtained and shown in **Fig. S5a**. No amorphous NiOOH shells were formed on the surfaces of the m-NiSe<sub>2</sub> and p-NiSe<sub>2</sub> samples at this stage. It is observed that the p-NiSe<sub>2</sub> catalyst requires an overpotential of 388 mV to drive the current density of 10 mA cm<sup>-2</sup>. This overpotential is dramatically reduced to 335 mV for the m-NiSe<sub>2</sub>. **Fig. S5b** shows the corresponding Tafel slopes. It is obvious that the m-NiSe<sub>2</sub> catalyst has a Tafel slope of 69 mV dec<sup>-1</sup>, which is much smaller than that of the p-NiSe<sub>2</sub> (118 mV dec<sup>-1</sup>). In **Fig. S5c**, the C<sub>dl</sub> value is 118  $\mu$ F cm<sup>-2</sup> for the p-NiSe<sub>2</sub>, and increases to 312  $\mu$ F cm<sup>-2</sup> for the m-NiSe<sub>2</sub>. The lower overpotential, smaller Tafel slope and larger C<sub>dl</sub> value reveal that the m-NiSe<sub>2</sub> is a better pre-electrocatalyst for OER than the p-NiSe<sub>2</sub>.



Fig. S6 Time-dependent current density curves of the catalysts in the initial 2 h.

| Catalytsts                                                                             | Electrolytes | ŋ (mV) @<br>j (mA cm <sup>-2</sup> ) | Tafel slope<br>(mV dec⁻¹) | Working<br>electrodes | References                                             |
|----------------------------------------------------------------------------------------|--------------|--------------------------------------|---------------------------|-----------------------|--------------------------------------------------------|
| marcasite $Fe_{1-x}Ni_xSe_2$<br>nanodendrites                                          | 1М КОН       | 279@10<br>333@100                    | 39                        | Glassy carbon         | This work                                              |
| pyrite Ni <sub>0.8</sub> Fe <sub>0.2</sub> Se <sub>2</sub> -drived<br>oxide nanoplates | 1М КОН       | 195@10                               | 28                        | Ni foam               | Nat. Commun.,<br>2016, 7, 12324.                       |
| pyrite Fe <sub>8.4%</sub> -NiSe <sub>2</sub><br>ultrathin nanowires                    | 0.1M KOH     | 268@10                               | 41                        | Glassy carbon         | Angew. Chem. Int.<br>Ed., 2018, 57,<br>4020–4024.      |
| pyrite Fe <sub>0.09</sub> Co <sub>0.13</sub> -NiSe <sub>2</sub><br>nanosheets          | 1М КОН       | 251@10                               | 63                        | Carbon fiber          | Adv. Mater., 2018,<br>30, 1802121.                     |
| pyrite Fe <sub>0.2</sub> NiSe <sub>2</sub>                                             |              | 280@10                               | 88                        |                       |                                                        |
| pyrite Ni <sub>0.5</sub> Fe <sub>0.5</sub> Se <sub>2</sub><br>octahedral crystalline   | 1М КОН       | 350@50                               | 63                        | Carbon fiber          | Appl. Surf. Sci.,<br>2017, 401, 17.                    |
| pyrite NiSe <sub>2</sub> nanowires/XC72                                                | 1М КОН       | 287@10                               | 65                        | Glassy carbon         | Small, 2017, 13,<br>1701487.                           |
| pyrite NiSe <sub>2</sub> /NiO <sub>x</sub> /XC72                                       |              | 266@10                               | 53                        |                       |                                                        |
| pyrite NiSe <sub>2</sub> nanowrinkles                                                  | 1М КОН       | 290@10                               | 63                        | Ni foam               | ACS Sustainable<br>Chem. Eng., 2018,<br>6, 2231–2239.  |
| NiSe@NiOOH Core/Shell<br>Hyacinth-like Nanostructures                                  | 1M KOH       | 501@100                              | 162                       | Ni foam               | ACS Appl. Mater.<br>Interfaces 2016, 8,<br>20057–20066 |
| Ni <sub>3</sub> Se <sub>2</sub> film/carbon fiber                                      | 1М КОН       | 284@10                               | 80                        | Cu foam               | Catal. Sci.<br>Technol., 2015, 5,<br>4954–4958.        |
| V-NiS <sub>2</sub> nanosheets                                                          | 1М КОН       | 290@10                               | 45                        | Glassy carbon         | ACS Nano 2017,<br>11, 11574–11583                      |
| NiS/NiS <sub>2</sub> interwoven structure                                              | 1М КОН       | 416@100                              | 156                       | Carbon cloth          | J. Mater. Chem. A, 2018, 6, 8233-8237                  |
| NiFe LDH                                                                               | 1М КОН       | 350@10                               | 40                        | Glassy carbon         | Nat. Commun.,<br>2014, 5, 4477.                        |

 Table S1 Recent advance of OER activity of Ni-based eletrocatalysts.

| FeCoNi /graphene spheres                    | 1М КОН   | 325@10 | 60  | Carbon paper  | ACS Catal., 2017,<br>7, 469 479.                            |
|---------------------------------------------|----------|--------|-----|---------------|-------------------------------------------------------------|
| Holey Ni(OH) <sub>2</sub> nanosheets        | 1М КОН   | 293@10 | 65  | Glassy carbon | Small 2017, 13,<br>1700334                                  |
| Ni(OH) <sub>2</sub> nanosheets              | 1М КОН   | 330@50 | 150 | Ni foam       | ACS Appl. Mater.<br>Interfaces, 2016, 8,<br>49, 33601-33607 |
| α-NiOOH nanosheet arrays                    | 1М КОН   | 266@10 | 76  | Ni foam       | ACS Sustainable<br>Chem. Eng., 2017,<br>5, 3808–3818.       |
| Ni <sub>1-x</sub> Fe <sub>x</sub> OOH films | 0.1M KOH | 320@10 | 45  | Au foil       | J. Phys. Chem.<br>C, 2015, 119, 32,<br>18303–18316.         |
| Commercial RuO <sub>2</sub>                 | 1М КОН   | 344@10 | 65  | Ni foam       | ACS Appl. Mater.<br>Interfaces, 2016, 8,<br>42, 28678-28688 |

| Catalysts                                               | TOF (s <sup>-1</sup> ) |  |  |
|---------------------------------------------------------|------------------------|--|--|
| m-NiSe <sub>2</sub>                                     | 0.97                   |  |  |
| m-Ni <sub>0.97</sub> Fe <sub>0.03</sub> Se <sub>2</sub> | 5.46                   |  |  |
| $m-Ni_{0.94}Fe_{0.06}Se_2$                              | 10.82                  |  |  |
| m-Ni <sub>0.88</sub> Fe <sub>0.12</sub> Se <sub>2</sub> | 8.49                   |  |  |
| p-NiSe <sub>2</sub>                                     | 0.17                   |  |  |

Table S2 TOFs of the various catalysts.

TOF can be calculated using the below equation:

$$TOF = \frac{J \times S \times \mu}{4 \times F \times n},$$

where J (A cm<sup>-2</sup>) is the current density at a given overpotential ( $\eta = 320 \text{ mV}$ ), S is the surface area of the electrode (0.071 cm<sup>2</sup>), F is the Faraday constant (96485 C mol<sup>-1</sup>), and n is the number of moles of reactive metal on the electrode. The  $\mu$  is the Faradaic efficiency that was determined from the total amount of charge Q(C) passed through the cell and the total amount of the produced O<sub>2</sub> n(O<sub>2</sub>) (mol), as described by the equation  $\mu = \frac{4 \times F \times n(O_2)}{Q}$ , assuming the four electrons are needed to produce one oxygen molecule. Herein, we assume

the  $\mu$  values to be 100% when calculating the TOFs (*Nat. Commun.*, 2019, **10**, 2149). The Ni and Fe are supposed to be the active sites for the various samples.