## **Electronic Supplementary Information**

## *In-situ* construction of hydrazone-linked COF-based core-shell

## hetero-frameworks for enhanced photocatalytic hydrogen evolution

Yao Chen, ad Dong Yang, bc Benbing Shi, ab Wei Dai, b Hanjie Ren, ad Ke An, ad

Zhiyuan Zhou, abd Zhanfeng Zhao, ad Wenjing Wang, abd and Zhongyi Jiang\*ade

<sup>a</sup> Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

<sup>b</sup> Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, China

<sup>c</sup> School of Environmental Science and Engineering, Tianjin University, 300072 Tianjin, China

<sup>d</sup> Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

<sup>e</sup> Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China \* E-mail: zhyjiang@tju.edu.cn Tel: 86-22-23500086, Fax: 86-22-23500086

\* E-mail: <u>znyflang@iju.eau.cn</u> 1el: 80-22-25500080, Fax: 80-22-2550008



Fig. S1. TEM images (a) U@TDE1, (b) U@TDE2, (c) U@TDE4 and (d) U@TDE6. The right of each TEM image is the thickness profile of boxed regions obtained by Digital Micrograph software.



Fig. S2. Small-angle XRD patterns of TFPT-DETH.



Fig. S3. FT-IR spectra of TFPT, DETH and TFPT-DETH.



Fig. S4. Solid state <sup>13</sup>C NMR spectra of TFPT-DETH and U@TDE4.



Fig. S5. TGA curves of NH<sub>2</sub>-UiO66, TFPT-DETH and U@TDE4.

| Table S1. Photocatalytic hydrogen evolution activity of the U@TDE4 hetero-framework |
|-------------------------------------------------------------------------------------|
| compared with published work of pure COFs and COF-based photocatalysts.             |

|                                       | Sacrificial        |                  |               | Activity        |                                        |          |     |
|---------------------------------------|--------------------|------------------|---------------|-----------------|----------------------------------------|----------|-----|
| Catalyst                              | Co catalyst        | agent            | Solvent       | Illumination    | (µmolg <sup>-1</sup> h <sup>-1</sup> ) | AQE      | Ref |
|                                       |                    |                  |               | ≥420 nm,        |                                        |          | 1   |
| CdS NPs/CTF-1                         | Pt                 | Lactic acid      | Water         | 300 W           | 12150                                  |          |     |
|                                       |                    |                  |               | $\geq$ 420 nm,  |                                        | 7.3% at  | 2   |
| CTF-BT/Th-1                           | Pt                 | TEOA             | Water         | 300 W           | 6600                                   | 420 nm   |     |
|                                       |                    |                  |               | $\geq$ 420 nm,  |                                        |          | 3   |
| CdS/TPPA-2                            | Pt                 | Lactic acid      | Water         | 400 W           | 3678                                   |          |     |
|                                       |                    |                  |               | ≥420 nm,        |                                        | 2.5% at  | 4   |
| TiO2@BpZn-COP                         | Pt                 | TEOA             | Water         | 300 W           | 1333                                   | 420 nm   |     |
| NH <sub>2</sub> -MIL-                 |                    |                  |               | $\geq$ 420 nm,  |                                        |          | 5   |
| 125(Ti)/B-CTF-1                       | Pt                 | TEOA             | Water         | 300 W           | 360                                    |          |     |
|                                       |                    |                  |               | $\geq\!420$ nm, |                                        | 3.2% at  | 6   |
| FS-COF                                | Pt                 | SA               | Water         | 300 W           | 10100                                  | 420 nm   |     |
|                                       |                    |                  |               | $\geq\!420$ nm, |                                        | 0.76% at | 7   |
| TpPa-1-COF                            | $MoS_2$            | SA               | Water         | 300 W           | 5585                                   | 420 nm   |     |
|                                       |                    |                  |               | ≥420 nm,        |                                        | 4.84%    | 8   |
| g-C <sub>40</sub> N <sub>3</sub> -COF | Pt                 | TEOA             | Water         | 300 W           | 4120                                   | at 420nm |     |
|                                       |                    |                  |               | $\geq\!400$ nm, |                                        |          | 9   |
| COP-TF@ CNi <sub>2</sub> P            | CNi <sub>2</sub> P | $Na_2SO_3/Na_2S$ | Seawater      | 300 W           | 2500                                   |          |     |
|                                       |                    |                  |               | ≥420 nm,        |                                        |          | 10  |
| NUS-55*                               | $[Co(bpy)_3]Cl_2$  | TEA              | Water/Ethanol | 300 W           | 2480                                   |          |     |
|                                       |                    |                  |               |                 |                                        |          | 11  |
|                                       |                    |                  |               | ≥420 nm,        |                                        | 2.2% at  |     |
| TFPT-COF*                             | Pt                 | TEOA             | Water         | 300 W           | 1970                                   | 400 nm   |     |

|                     |                     |      |            |           |       |          | 12   |
|---------------------|---------------------|------|------------|-----------|-------|----------|------|
|                     |                     |      |            | ≥420 nm,  |       |          |      |
| TpPa-2-COF          | Ni(OH) <sub>2</sub> | SA   | PBS Buffer | 300 W     | 1896  |          |      |
|                     |                     |      |            | ≥420 nm,  |       | 0.15% at | 13   |
| N <sub>3</sub> -COF | Pt                  | TEOA | PBS Buffer | 300 W     | 1703  | 400 nm   |      |
| TpDTz-COF           | Ni-thiolate         | TEOA | Water      | AM 1.5    | 941   |          | 14   |
|                     |                     |      |            | ≥420 nm,  |       |          | 15   |
| TTR-COF*            | Au                  | TEOA | Water      | 300 W     | 430   |          |      |
|                     |                     |      |            | ≥ 395 nm, |       | 1.30% at | 16   |
| TP-BDDA-COF         | Pt                  | TEOA | Water      | 300 W     | 324   | 420 nm   |      |
| COF-42*             | [Co(dmgH)2pyCl]     | TEOA | ACN/Water  | AM1.5     | 233   |          | 17   |
| A-TEBPY-COF         | Pt                  | TEOA | PBS Buffer | AM 1.5    | 98    |          | 18   |
| PTP-COF             | Pt                  | TEOA | PBS Buffer | AM 1.5    | 83.83 |          | 19   |
|                     |                     |      |            | ≥420 nm,  |       | 1.11% at | This |
| U@TDE4              | Pt                  | SA   | PBS Buffer | 300 W     | 7178  | 420 nm   | work |
|                     |                     |      |            | ≥420 nm,  |       |          | This |
| TFPT-COF            | Pt                  | SA   | PBS Buffer | 300 W     | 2301  |          | work |
|                     |                     |      |            |           |       |          |      |

\* represents hydrazone-linked COFs.



**Fig. S6.** Hydrogen evolution curves of TFPT, physical mixture of DETH and TFPT (1: 1), TFPT-DETH and U@TDE4 under visible light irradiation ( $\lambda \ge 420$  nm).



Fig. S7. SEM images of (a) TFPT-DMTH and (b) U@TDM4; (c) TEM images of U@TDM4; SEM images of (d) TFPT-DPP and (e) U@TDP4; (f) TEM images of U@TDP4.



**Fig. S8.** (a) Long-term hydrogen evolution curve over U@TDE4 under visible light (≥420 nm) irradiation; (b) FTIR spectra of U@TDE4 before and after photocatalysis for 12 h.

## Notes and references

- 1. D. Wang, X. Li, L. L. Zheng, L. M. Qin, S. Li, P. Ye, Y. Li and J. P. Zou, Nanoscale, 2018, 10, 19509-19516.
- 2. W. Huang, Q. He, Y. P. Hu and Y. G. Li, Angew. Chem., Int. Ed., 2019, 58, 8676-8680.
- 3. J. Thote, H. B. Aiyappa, A. Deshpande, D. D. Diaz, S. Kurungot and R. Banerjee, *Chem. Eur. J.*, 2014, **20**, 15961-15965.
- 4. Q. Q. Yang, P. Peng and Z. H. Xiang, Chem. Eng. Sci., 2017, 162, 33-40.
- 5. F. Li, D. K. Wang, Q. J. Xing, G. Zhou, S. S. Liu, Y. Li, L. L. Zheng, P. Ye and J. P. Zou, *Appl. Catal., B*, 2019, **243**, 621-628.
- X. Wang, L. Chen, S. Y. Chong, M. A. Little, Y. Wu, W. H. Zhu, R. Clowes, Y. Yan, M. A. Zwijnenburg, R. S. Sprick and A. I. Cooper, *Nature Chemistry*, 2018, 10, 1180-1189.
- M. Y. Gao, C. C. Li, H. L. Tang, X. J. Sun, H. Dong and F. M. Zhang, J. Mater. Chem. A, 2019, 7, 20193-20200.
- S. Bi, C. Yang, W. Zhang, J. Xu, L. Liu, D. Wu, X. Wang, Y. Han, Q. Liang and F. Zhang, *Nat. Commun.*, 2019, 10, 2467-2476.
- 9. Y. Y. Liu and Z. H. Xiang, ACS Appl. Mater. Interfaces, 2019, 11, 41313-41320.
- 10. J. Wang, J. Zhang, S. B. Peh, G. Liu, T. Kundu, J. Dong, Y. Ying, Y. Qian and D. Zhao, Sci. China. Chem., 2019, 63, 192-197.
- 11. L. Stegbauer, K. Schwinghammer and B. V. Lotsch, Chem. Sci., 2014, 5, 2789-2793.
- 12. H. Dong, X. B. Meng, X. Zhang, H. L. Tang, J. W. Liu, J. H. Wang, J. Z. Wei, F. M. Zhang, L. L. Bai and X. J. Sun, *Chem. Eng. J.*, 2020, **379**, 122342-122350.
- 13. V. S. Vyas, F. Haase, L. Stegbauer, G. k. Savasci, F. Podjaski, C. Ochsenfeld and B. V. Lotsch, Nat. Commun.,

2015, 6, 8508-8516.

- 14. B. P. Biswal, H. A. Vignolo-Gonzalez, T. Banerjee, L. Grunenberg, G. Savasci, K. Gottschling, J. Nuss, C. Ochsenfeld and B. V. Lotsch, J. Am. Chem. Soc., 2019, 141, 11082-11092.
- L. Y. Li, Z. M. Zhou, L. Y. Li, Z. Y. Zhuang, J. H. Bi, J. H. Chen, Y. Yu and J. G. Yu, ACS Sustainable Chem. Eng., 2019, 7, 18574-18581.
- P. Pachfule, A. Acharjya, J. Roeser, T. Langenhahn, M. Schwarze, R. Schomacker, A. Thomas and J. Schmidt, J. Am. Chem. Soc., 2018, 140, 1423-1427.
- T. Banerjee, F. Haase, G. Savasci, K. Gottschling, C. Ochsenfeld and B. V. Lotsch, J. Am. Chem. Soc., 2017, 139, 16228-16234.
- L. Stegbauer, S. Zech, G. Savasci, T. Banerjee, F. Podjaski, K. Schwinghammer, C. Ochsenfeld and B. V. Lotsch, Adv. Energy Mater., 2018, 8, 1703278-1703285.
- 19. F. Haase, T. Banerjee, G. Savasci, C. Ochsenfeld and B. V. Lotsch, Faraday Discuss., 2017, 201, 247-264.