Supporting Information for:

Ti₃C₂O₂ Supported Single Atom, Trifunctional Catalyst for Electrochemical Reactions

Zhanzhao Fu, Chongyi Ling*, Jinlan Wang*

School of Physics, Southeast University, Nanjing, 211189, China Email: *lingchy@seu.edu.cn (C.L.), jlwang@seu.edu.cn (J.W.)*

1. Calculation method of HER activity

$$H^+ + e^- + \stackrel{\Delta G_H}{\to} H^* \tag{1}$$

* represents the active site and H* represents the adsorbed intermediate. According to the computational hydrogen electrode model,^{s1} $\Delta G_{\rm H}$ can be calculated according to the following relationship:

$$\Delta G_H = \Delta E_H + \Delta E_{ZPE} - T \Delta S_H \tag{2}$$

 $\Delta E_{\rm H}$ is the adsorption energy of hydrogen calculated by DFT, $\Delta E_{\rm ZPE}$ is the difference between the zero point energy of adsorbed hydrogen and gas phase hydrogen, T is the temperature (298.15 K), and $\Delta S_{\rm H}$ is the change of entropy between the adsorption state and the gas phase. The entropy of the gas phase molecule is obtained by the NIST database, and the entropy and zero-point energy of the adsorbate can be obtained by calculating the vibration frequency where the entropy value is calculated by the following formula:^{s2}

$$S(T) = \sum_{i=1}^{3N} \left[-Rln \left(1 - e^{-\frac{hv_i}{k_B T}} \right) + \frac{N_A hv_i e^{-\frac{hv_i}{k_B T}}}{T \frac{1 - e^{-hv_i/k_B T}}{1 - e^{-hv_i/k_B T}}} \right]$$
(3)

Where R stands for the ideal gas constant, k_B is Boltzmann constant, h is Planck constant, N_A is Avogadro constant, v_i represents the vibration of the normal mode, and N represents the number of adsorbed atoms.

2. Calculation method of OER and ORR activity

At pH=0, the OER usually goes through the following four steps:

$$H_2 O(l) + * \rightarrow OH^* + H^+ + e^-$$
 (4)

$$OH^* \xrightarrow{\Delta G_2} O^* + H^+ + e^- \tag{5}$$

$$0^{*} + H_{2}O(l) \to OOH^{*} + H^{+} + e^{-}$$
(6)

$$00H^* \to *+ O_2(g) + H^+ + e^-$$
(7)

The change in free energy is calculated by the following formula:^{s3}

$$\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S + \Delta G_U + \Delta G_{pH}$$
⁽⁸⁾

 ΔE refers to the energy obtained by DFT calculation; $\Delta G_U = -eU$, where U is the electrode potential, e is the number of transferred electrons; $\Delta G_{pH} = k_B T ln 10 \times pH$, in this work, pH = 0 was employed. A method developed by Nørskov et al was employed to calculate OER overpotentials, use the developed method of Nørskov et al:^{s4}

$$\eta^{OER} = \frac{\max\left\{\Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4\right\}}{e} - 1.23 V$$

(9)

Since ORR is the reverse of OER, we also calculated the ORR overpotential (η^{ORR}) for TMs@Ti₃C₂O₂, which is defined as the difference between 1.23 V and the reaction energy of the minimum free energy change of the four mechanistic steps in this system:

.

$$\eta^{ORR} = 1.23 V - \frac{\min\left\{\Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4\right\}}{e}$$

_

(10)

Figure S1. The $\Delta G_{\rm H}$ of primitive Ti₃C₂O₂ at different H coverage.

Reaction Coordinate

Figure S2. $\Delta G_{\rm H}$ of different TM₁@Ti₃C₂O₂ at TM sites.

Figure S3. Free energy diagram for the OER over the TM sites of $TM_1@Ti_3C_2O_2$ at an electrode potential of U = 0 V.

Figure S4. Free energy diagram for the OER (a) and ORR (b) of the primitive $Ti_3C_2O_2$ at an electrode potential of U=0 V.

Figure S5. Calculated PDOS of the weight *d* band (D_F) of the TM atoms in TM₁@Ti₃C₂O₂. The D_F is marked by the red dashed line, and the Fermi level is set as zero.

Figure S6. The DOS of $Pd_1@Ti_3C_2O_2$, and the Fermi level is set as zero.

4. Tables:

Table S1. The number of electrons changed of O-site after the introduction of transition metals and the calculated OER/ORR overpotential of $TM_1@Ti_3C_2O_2$ at non-TM site and the values of U were used.

TM1@Ti3C2O2	Fe	Co	Ni	Cu	Ru	Rh	Pd	Ag	Os	Ir	Pt	Au
$\Delta N_{\rm e}$ (e)	0.008	0.008	0.001	0.002	0.009	0.008	0.005	0.012	0.007	0.004	0.006	0.003
NOER (V)	2.08	1.97	2.08	3.23	2.08	3.36	1.98	4.03	5.64	2.06	2.09	2.52
Norr (V)	2.95	2.95	2.93	2.91	2.94	2.94	2.97	2.84	2.60	3.01	2.69	1.08
U (eV)	4.10	4.20	4.20	4.00	5.00	3.40	3.90	4.00	4.00	2.90	2.90	4.00

References

- J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jonsson, *The Journal of Physical Chemistry B*, 2004, 108, 17886-17892.
- s2. Y.-A. Zhu, D. Chen, X.-G. Zhou and W.-K. Yuan, *Catalysis Today*, 2009, 148, 260-267.
- s3. M. Li, L. Zhang, Q. Xu, J. Niu and Z. Xia, Journal of Catalysis, 2014, 314, 66-72.
- s4. I. C. Man, H. Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov and J. Rossmeisl, *ChemCatChem*, 2011, 3, 1159-1165.