Supplementary materials:

Hollow sphere structured V₂O₃@C as an anode material for high

capacity potassium-ion batteries

Fei Chen, Shuo Wang, Xiao-Dong He, Jia-Ying Liao, Qiao Hu, Jie-Min Dong, Chun-Hua Chen *

CAS Key Laboratory of Materials for Energy Conversions, Department of Materials

Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science

and Technology, University of Science and Technology of China, Anhui Hefei 230026,

China

Figure S1. High-resolution XPS spectrum of V 2p of $B-V_2O_3@C$ (a) and $HS-V_2O_3@C$ materials (b).

Figure S2. SEM images of B-V₂O₃@C (a) and HS-VO₂ (b); TEM images of HS-VO₂ (c) and HS-V₂O₃ (d).

Figure S3. Nitrogen adsorption-desorption isotherms and the pore size distributions of bulk V_2O_3 (a, c) and hollow sphere V_2O_3 (b, d).

Table S1. Electronic conductivity of HS-V₂O₃@C and HS-V₂O₃ samples

Sample	Electronic conductivity (S cm ⁻¹)
HS-V ₂ O ₃ @C	9.011 x 10 ⁻³
HS-V ₂ O ₃	3.397 x 10 ⁻³

In order to verify that the carbon coating layer can improve the electronic conductive property of materials, we have measured the electronic conductivity of HS-V₂O₃@C and HS-V₂O₃ samples through a four-probe method. Testing electrodes were prepared by mixing active materials and PVDF with the ratio of 8:1. The obtained slurry was cast onto an insulating substrate and dried in vacuum at 70°C for 12 h to remove excess solvent and cut to Φ 10 mm sheets. The calculation results show that through the carbon coating method, the electronic conductivities of HS-V₂O₃ enhance from 3.397 x 10⁻³ S cm⁻¹ to 9.011 x 10⁻³ S cm⁻¹, indicating that carbon coating can effectively improve the electron transmission ability of V₂O₃.

Figure S4. Cycle performance for HS-V₂O₃/C electrode at 100 mA g⁻¹.
Table S2. The concentration of vanadium dissolved into electrolyte after 100 cycles examined by ICP analysis.

Sample	Concentration of V (µg ml ⁻¹)
HS-V ₂ O ₃ @C	0.178
HS-V ₂ O ₃ /C	0.357

For the sake of verifying the dissolution of vanadium element with low valence state into electrolyte, we prepared the HS-V₂O₃/C sample (by mixing HS-V₂O₃ and carbon reduced from PVA in a mortar, the final carbon content is 30.0 wt%) and evaluated its cycle performance. The capacity decay is very serious, after 500 cycles, only 90 mA h g^{-1} left.

We disassembled the half-cells after 100 cycles under an argon atmosphere in glove box, took out the electrode films, and they were immersed in 2 ml of DME solvent for one month. However, there is no significant color difference can be observed between the HS-V₂O₃-@C material and the HS-V₂O₃/C material. This may because only a trace of vanadium element is dissolved in the DME. In order to compare the dissolution content of the vanadium element in the two solutions, we performed an ICP analysis. We firstly took out the electrode films, evaporated the DME solvent at 120°C, and then completely dissolved the residue with an equal volume (2 ml) of concentrated nitric acid. According to the analysis results of ICP, the dissolution phenomenon of the HS-V₂O₃/C sample into electrolyte is more serious. For the HS-V₂O₃/C sample, in which the surface of V₂O₃ has no coating layer, bare V₂O₃ particles can contact with electrolyte directly. It is more likely to cause the dissolution of low valence state transition metal ions. And the carbon coating layer of the $HS-V_2O_3-@C$ material is very uniform, can suppress the dissolution of vanadium effectively.

Figure S5. The *ex situ* XRD patterns of HS-V₂O₃@C and HS-V₂O₃/C electrodes after 100 cycles (current density: 200 mA g^{-1}).

Figure S6. SEM images of HS-V₂O₃@C before (a) and after (c) 100 cycles (current density: 200 mA g^{-1}); HS-V₂O₃/C before (b) and after (d) 100 cycles (current density:

200 mA g⁻¹).

Figure S7. The initial 3 cycles of CV curves of HS-V₂O₃@C electrode at 0.1 mV s⁻¹.

Figure S8. Electrochemical analyses of $B-V_2O_3@C$ electrodes: (a) CV curves of $B-V_2O_3@C$ electrode at different scan rates; The contribution percentages from capacitive and diffusion effect of $B-V_2O_3@C$ electrode at 4 mV/s (b) and other scan rates (c).

Figure S9. (a) EIS spectra of HS-V₂O₃@C, B-V₂O₃@C and HS-V₂O₃ samples; (b) the equivalent circuit used for the experimental impedance data.

sample	$\operatorname{Rs}(\Omega)$	$\operatorname{Rct}(\Omega)$
HS-V ₂ O ₃ @C	7.471	961.7
$B-V_2O_3@C$	7.194	1806.0
$HS-V_2O_3$	7.825	2538.0

Table S3. The fitted impedances of HS-V₂O₃@C, B-V₂O₃@C and HS-V₂O₃.

We performed the EIS results of HS-V₂O₃@C, HS-V₂O₃ and B-V₂O₃@C samples to compare the electron and ion transport properties. The EIS spectra are fitted using the equivalent circuit model (Fig. S9b), where Rs represents solution resistance corresponding to the electrolyte and electrical contacts, and Rct represents charge-transfer resistance for the electrons and K⁺. For all of the samples, the value of Rs is approximately equal, while the HS-V₂O₃@C possess the lowest Rct values, which is in good agreement of its superior rate performance and cycling stability. Compared with B-V₂O₃@C, HS-V₂O₃ has the highest Rct value even with a smaller particle size, proving that carbon coating effectively decreases the charge-transfer resistance.

Table S4. Comparison of recent reported intercalation anode materials for PIBs.

Sampla	Electrolyte	Consister Detention	Rate	Referenc	
Sample		Capacity Retention	Capability	e	
Hard carbon	0.8 M KPF ₆ /	155 mA h g^{-1} / 200 cycles at	$(0 \dots h h = 1 \text{ at } 2C)$	S1	
	EC:DEC	0.5C	$60 \text{ mA h g}^{-1} \text{ at } 2C$		
Soft carbon	0.8 M KPF ₆ /	160 mA h g ^{-1} / 50 cycles at	140	\$2	
	EC:DEC	2C	140 mA n g ⁺ at 5C	32	
WS_2	5 M KTFSI /	$60~mA~h~g^{-1}/600$ cycles at	30 mA h g ⁻¹ at 500	S3	
	DEGDME	20 mA g ⁻¹	$mA g^{-1}$		
Hard-Soft	0.8 M KPF ₆ /	186 mA h g^{-1} / 200 cycles at	121 mA h g^{-1} at	S 4	
composite carbon	EC:DEC	1C	10C	51	
York-Shell carbon	0.8 M KPF ₆ /	138 mA h g^{-1} / 1200 cycles at	121 mA h g ⁻¹ at		
sphere	EC:DEC	200 mA g ⁻¹	5000 mA g^{-1}	55	
$K_2 Ti_8 O_{17}$	0.8 M KPF ₆ /	110.7 mA h g^{-1} / 50 cycles at	44.2 mA h g ⁻¹ at	S6	
	EC:DEC	20 mA g ⁻¹	500 mA g ⁻¹		
HS-V ₂ O ₃ @C	3 M KFSI /	330 mA h g^{-1} / 500 cycles at	79 mA h g ⁻¹ at 5000	This work	
	DME	100 mA g ⁻¹	$mA g^{-1}$		

Reference

- S1. Y.C. Li, R.A. Adams, A. Arora, V.G Pol, A.M. Levine, R.J. Lee, K. Akato, A.K. Naskar and M.P. Paranthaman, *J. Electrochem. Soc.*, 2017, **164**, A1234-A1238.
- S2. Z.L. Jian, W. Luo and X.L. Ji, J. Am. Chem. Soc., 2015, 137, 11566-11569.
- S3. R. Zhang, J. Bao, Y. Pan and C.F. Sun, Chemical Science, 2019, 10, 2604-2612.
- S4. Z.L. Jian, S. Hwang, Z.F. Li, A.S. Hernandez, X.F. Wang, Z. Y. Xing, D. Su and X.L. Ji, *Adv. Funct. Mater.*, 2017, 27, 1700324.
- S5. H. Zhang, H. He, J. Luan, X. Huang, Y. Tang and H. Wang, J. Mater. Chem. A, 2018, 6, 23318-23325.
- S6. J. Han, M.W. Xu, Y.B. Niu, G.N. Li, M.Q. Wang, Y. Zhang, M. Jia and C.M. Li, *Chem. Commun.*, 2016, **52**, 11274-11276.