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Supplementary Methods

Fabrication of flexible SiO2 nanofibers 

The SiO2 nanofibers were prepared by the combination of sol-gel method and electrospinning 

reported in our previous work.[1-2] First, SiO2 precursor sol solution was prepared by mixing 

TEOS, H2O, EtOH, C2H2O4 with a molar ratio of 1:3.57:0.71:0.016 at room temperature for 8 

h. Meanwhile, a 23 wt% PVB/EtOH solution was prepared by stirring dissolving the PVB 

powder in EtOH at room temperature for 8 h. Subsequently, SiO2 sol and PVB/EtOH solution 

were mixed with the mass ratio of 3:1 and stirred for another 4 h to obtain the electrospinning 

precursor solution. Following electrospinning process was performed by utilizing DXES-1 

spinning equipment with an applied high voltage of 15 kV, receiving distance of 15 cm, and a 

constant feed rate of 1 mL h-1. The as-spun composite PVB/TEOS composite nanofibers were 

calcined at 800 °C in a muffle furnace by gradually increasing the temperature at a heating rate 

of 5 °C min-1 to obtain SiO2 nanofibers. 

Fabrication of SNFAs 

SNFAs were prepared by freeze-drying method reported in our previous work.[2] The 

procedure for the preparing of SNFA with a density of 5 mg cm-3 is as follows. Firstly, 1 g 

flexible SiO2 nanofibers and 0.26 g SiO2 precursor sol were uniformly dispersed in 200 g PEO 

solution with the content of 0.01 wt% by using high-pressure homogenizer (AH-BASIC, 

Shanghai Yang Yi Biotech Co., Ltd. China.). Then, the obtained fibrous dispersion was 

transferred to the pre-prepared molds, and frozen in liquid nitrogen bath, and then freeze-dried 

for 24 h to completely removing the ice crystals within the samples to obtain the unbonded 

polymer-assisted silica nanofibrous aerogels (PNFAs). Consequently, the PSNAs were calcined 

at 700 ℃ in a muffle furnace by gradually increasing the temperature at a heating rate of 5 °C 

min-1 to obtain SNFAs. 

  Fabrication of BSAs with ultralow density of 1 mg cm-3

Based on the fabrication process of SNFAs above, SNFAs with a flyweight density of 0.5 

mg cm-3 were fabricated. Subsequently, this SNFA was immersed into the pre-prepared MTMS-

based silica sol with the mass content of MTMS 0.2 g. After the following hydrolysis-

condensation, solvent exchange, APD, and calcination process, BSA with ultralow density of 1 

mg cm-3 was obtained. Theoretically, the density of the aerogel obtained by this method should 

be 0.6 mg cm-3. However, the volume shrinkage of SNFA during the immersing process 

resulting in the increase of density. 
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Table S1. Physical properties of SNFA and BSAs. 

Sample
MTMS 

[g]

ρ 

[mg cm-3]

Loading of granular 

silica aerogel (%)
Porosity [%] SBET

a)
 [m2 g-1] Vpore [cm3 g-1] Dpore

b)[nm]

SNFA 0 5.05 0 99.77 2.20 0.0017 34.22

BSA1 0.2 5.97 15.39 99.73 67.41 0.0472 4.10

BSA2 0.5 7.69 34.31 99.65 144.08 0.0907 3.41

BSA3 1 16.53 56.00 99.25 200.84 0.2070 5.62

BSA4 2 29.39 73.89 98.66 450.42 0.5963 6.09

a) Specific surface area obtained from the nitrogen adsorption–desorption isotherms using the 

Brunauer-Emmett-Teller equation; b) Mean pore diameter obtained from the nitrogen 

adsorption–desorption isotherms according to the Barrett-Joyner-Halenda method. 

Table S2. The relevant properties of BSAs and other commonly used thermal insulators

Materials Density
(mg cm-3)

Thermal 
conductivity
(W m-1 K-1)

Maximum
working temperature

(℃)
Compressibility

HNAs 1~30 0.022 - 0.027 1100 Superelastic

PU foams 30 – 200 0.027 – 0.2 200 Elastic

Glass fiber/SiO2 aerogels 50 – 300 0.04 – 0.2 800 Elastic

Nonwovens 50 – 200 0.05 – 0.3 150 Elastic
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Fig. S1 – S13

 

Fig. S1 SEM images of BSA1 (a), BSA2 (b), BSA3 (c) and BSA4 (d).
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Fig. S2 Micro-orientation and macro-isotropic structure of BSAs.
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Fig. S3 100-cyclic compressive test of BSA1 (a), BSA2 (b), BSA3 (c), and BSA4 (d).
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Fig. S4 (a) Three compressing direction (x, y, and z) on a cubic BSA sample. (b-d) Compressive 
stress versus strain curves for BSAs under three compressing direction.
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Fig.  S5 The compressive σ−ε curves of BSAs under different compressive rates ranging from 
10 to 500 mm min−1.
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Fig.  S6 (a) The measurement of tensile mechanical property was performed by using a TA-
Q850 DMA instrument with a tensile clamp. (b) Tensile σ-ε curve of BSAs.
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Fig.  S7 The single-cycle σ-ε curve at -100oC and 500oC are almost completely the same with 
the curve at 25oC (ε = 80%, both along the axial direction). 
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Fig.  S8 3D surface graphs of the stress dependence on strain and temperature in the 
compression (a) and release(b) process of BSAs.
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Fig.  S9 The Young’s modulus, loss modulus, and damping ratio for the first cycle of BSAs (ε 
= 60%) at different temperature.
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Fig.  S10 a SEM of silica nanofibrous membrane. b SEM of a single nanofiber showing the 
good flexibility. c The tensile stress–strain curve of silica nanofibrous membrane. Inset: Optical 
paragraph of silica nanofibrous membrane showing superior stretch resistance.
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Fig.  S11 The thermal conductivities of the BSA2 at different temperature. 



16

10 20 30 40 50 60 70 80 90

1000oC, 2h

1100oC, 2h

1200oC, 2h

(3
01

)
(2

12
)

(1
13

)

(2
00

)
(1

02
)

In
te

ns
ity

 (a
.u

.)

2θ (o)

1300oC, 2h

(1
01

)

Fig.  S12 XRD patterns of BSA2 after calcined at 1000, 1100, 1200 and 1300oC for 2 h. 
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Fig.  S13 100-cyclic compressive test of BSA2 after calcined at 1100oC for 2 h.


