Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic supporting information for

Exceptional interfacial electrochemistry of few-layered 2D MoS₂ quantum

sheets for high performance flexible solid-state supercapacitors

Swapnil Shital Nardekar¹, Karthikeyan Krishnamoorthy¹, Parthiban Pazhamalai¹,

Surjit Sahoo¹, Vimal Kumar Mariappan¹, and Sang -Jae Kim^{1,2*}

¹Nanomaterials & system laboratory, Major of Mechatronics Engineering,

Faculty of Applied Energy System, Jeju National University, Jeju-63243, South Korea.

²Department of Advanced Convergence Science & Technology, Jeju National University,

Jeju-63243, South Korea.

Corresponding author Email: <u>kimsangj@jejunu.ac.kr</u>

S1 Experimental section

S1.1 Materials

The molybdenum disulfide powders (bulk) were obtained from Asbury carbon, USA. Sodium chloride (NaCl), sulphuric acid (H₂SO₄), polyvinyl alcohol (PVA) and N-Methyl-2-Pyrrolidone (NMP) were procured from Daejung metals and chemicals, South Korea. Carbon black and polyvinylidene fluoride (PVDF) was purchased from Alfa Aesar, South Korea. Carbon cloth was purchased from CeTech Fuel cell store, Texas. All the chemicals used in this work are of research-grade and used without further purification.

S1.2 Preparation of MoS₂ quantum sheets

A salt assisted mechanical milling process has been employed for the preparation of MoS_2 quantum sheet from bulk MoS_2 powders.¹ Briefly, the precursor bulk MoS_2 powders and NaCl were taken in the ratio of 1:10 in a tungsten carbide bowl and allowed to milling using tungsten carbide balls at a speed of 300 rpm for 15 h. Upon completion of the milling process, the milled powders were washed with doubly distilled water and ethanol several times to remove the salt content in the powders. The washed sample is allowed to ultrasound irradiation for 4 h to further to transform the pulverized materials into MoS_2 quantum sheets. The resulting powder is washed, dried at 80 °C and used for further characterization.

S1.3 Instrumentation

The crystallinity and phase of the MoS₂ powders was characterized using X-ray diffractometer (Empyrean) operated at 40 keV and 40 mA Cu Kα radiation. Laser Raman and mapping analysis were obtained using Lab Ram HR Evolution Raman spectrometer (Horiba Jobin-Yvon, France) with an excitation wavelength of 514 nm with an Ar⁺ ion laser. The Raman mapping of MoS₂ QSs was analyzed using Lab Spec (Ver. 6.2) software. The high-resolution transmission electron micrograph (HR-TEM) for the bulk MoS₂ and MoS₂ QSs were carried out on an HR-TEM, JEOL JEM 2011, JEOL Ltd. X-ray photoelectron spectroscopy

(XPS) was used to analyze the chemical composition and state of elements present in MoS₂ via ESCA-2000, VG Microtech Ltd. using monochromatic X-ray beam source at 1486.6 eV (aluminium anode) and 14 kV to scan the sample surface. The AFM analysis was carried out using Bruker instrument with using tapping mode (cantilever PPPHCHR with tip radius: < 10 nm, brand: Nanosensors, material: highly doped silicon, force constant: ~42 N/m). The UV-Vis spectroscopy was used to analyze the absorbance range of material via UV-Vis spectrophotometer (Lambda 25 model). The zeta potential of the MoS₂ QSs was measured with Malvern zetasizer instrument. The bending testing of the device has been performed with a Bending Tester machine (JUNIL-JIBT-200). The electrochemical characterization was performed using Autolab PGSTAT302N electrochemical workstation.

S1.4 Preparation of PVA-H₂SO₄ gel electrolyte

The polymer gel electrolyte (PVA/H_2SO_4) was prepared using the method provided in the literature ². Briefly, 2 g of PVA was dissolved in 20 mL of distilled water using magnetic stirrer until the formation of a homogenous solution. To the formed homogenous solution, an appropriate amount of H_2SO_4 was added and allowed to stir under heat to form a clear and transparent gel. Finally, the obtained PVA/H_2SO_4 gel is allowed to cool at room temperature and used for the fabrication of supercapacitor.

S1.5 Fabrication of MoS₂ solid-state symmetric supercapacitors

Initially, MoS₂ quantum sheets (MoS₂ QSs) electrodes were prepared by grounding active material (MoS₂ QSs), carbon black and PVDF in the ratio (85:10:5) with the appropriate amount of NMP in an agate-mortar until the formation of slurry. The obtained slurry was coated on to the conductive carbon cloth (CC) substrate with an electroactive area of 1×1 cm² and dried at 80 °C overnight. The electroactive mass loading of the MoS₂ QSs electrode loaded on the carbon cloth is about 2 mg in each electrode. The MoS₂ quantum sheets symmetric supercapacitor (SSC) was fabricated using MoS₂ QSs electrode coated on carbon cloth as

positive and negative electrodes separated by PVA/H_2SO_4 gel electrolyte. The electrochemical characterization of the fabricated SSC was examined via cyclic voltammetry (CV), galvanostatic charge-discharge analyses and Electrochemical impedance spectroscopy (EIS) using an Autolab PGSTAT302N electrochemical workstation.

S1.6 Electrochemical analysis

The specific device capacitance (Csp) of the MoS₂ QSs SSC device was calculated from the CV and CD analysis using relation³:

$$C_{sp} = \int I dV / (s \times \Delta V \times M) \qquad (1)$$

$$C_{sp} = (I \times \Delta t) / (\Delta V \times M) \qquad (2)$$

Here " C_{sp} " is the specific device capacitance (F g⁻¹) of MoS₂ QSs SSC device, "T" is the current (A), "s" is the scan rate (mV s⁻¹), " ΔV " is the voltage window (V), " Δt " is the discharge time (s) and "M" is the mass of the electrodes (mg).

The energy (*E*) and power (*P*) density of the MoS_2 QSs SSC device are calculated using the relations ⁴:

$$E = 0.5 \times C_{sp} \times \Delta V^2 \dots (3)$$
$$P = E / \Delta t \dots (4)$$

Figure S1: Digital photographs of bulk MoS₂ and MoS₂ quantum sheets dispersed in the DI water.

Figure S1 shows the digital photographs of the bulk MoS_2 (black) and MoS_2 QSs (brownish-green) dispersed in DI water which reveals the significant change in colour of the solutions. This is due to significant quantum confinement in MoS_2 QSs compared to the bulk MoS_2 .

Figure S2. XPS survey spectrum of MoS_2 QSs.

Figure S3. Raman spectrum for the single-layered MoS_2 QSs.

Figure S5. Zeta potential measurements of aqueous dispersions containing bulk MoS2 and

MoS₂ QSs.

Figure S5. Electrochemical impedance spectroscopy of bulk MoS₂ and MoS₂ QSs electrodes. (A) Nyquist plot (plot of real vs. imaginary impedance) (B) Bode modulus plot (plot of electrochemical impedance vs. applied frequency).

Figure S6. Nyquist plot of MoS_2 QSs based SSC device and the inset presents the corresponding equivalent circuit model.

Figure S7: Bode phase angle plot of MoS₂ QSs SSC.

Figure S8. Continuous charge-discharge cycles of MoS_2 QSs SSC measured at a constant

current of 5.0 mA.

Figure S9: Coulombic efficiency plot of MoS_2 QSs SSC device measured at various current.

Figure S10. Ragone plot of MoS_2 QSs SSC device.

Figure S11. Circuit diagram for solar-driven wireless charging of MoS₂ QSs SSC.

Figure S12: Cyclic Voltammetry (CV) profile for (A) single MoS₂ QSs SSC and (B) two MoS₂ QSs SSC connected in series.

S. No	Material name	No. of fold increment	Capacitance	Ref.
		in the current	retention (%)	
		density		
1.	MoS ₂ /RGO/MoS ₂ @Mo	After (×2.5)	37.5%	5
2.	MoS ₂ -Ni Foam	After (×10)	48.5%	6
3.	VSL-MoS ₂	After (×3)	50%	7
4.	S-MoS ₂ /CNS	After (×10)	45%	8
5.	f-MoS ₂ /CNS	After (×10)	44%	8
6.	Flower-like MoS ₂	After (×10)	51.5%	9
7.	Siloxene	After (×10)	31%	10
8.	WS_2	After (×10)	37%	11
9.	MoS ₂ QSs	After (×10)	42.5 %	(This work)

Table 1: Comparison of the rate capability of MoS_2 QS based SSC to that of the reported ones.

S. No	SSC Device	Electrolyte	OPW	Specific Capacitance (F g ⁻¹)	Energy Density (Wh kg ⁻¹)	Power Density (W kg ⁻¹)	Ref.
R1	Commercial MoS ₂	-	-	-	0.1	1500	12
R2	$2H-MoS_2$	-	-	-	0.16	1500	12
R3	VSL-MoS ₂	PVA/Na ₂ SO ₄	0-1.0 V	34.1	4.7	1900	7
R4	$1T-MoS_2$	$1 \text{ M H}_2\text{SO}_4$	0-0.6 V	-	5	8550	12
R5	MoS ₂ -Ni Foam	PVA/Na ₂ SO ₄	0-1.0 V	38.9	5.4	2800	6
R6	MoS ₂ Nanospheres	PVA/LiCl	-0.8-0.8V	-	5.42	128	13
R7	MoS ₂ /RGO/M oS ₂ @Mo	1 M H ₂ SO ₄	0-0.9 V	53.3	6.22	1870	5
R8	s-MoS ₂ /CNS	1M Na ₂ SO ₄	0-0.7 V	108	7.4	3700	8
R9	f-MoS ₂	1M Na ₂ SO ₄	0-0.8V	96	8.59	4000	8
10	MoS ₂ QSs SSC	PVA/H ₂ SO ₄	0-0.8V	162.7	14.46	2000	This work

Table S2: Performance Metrics of $MoS_2 QSs SSC$ device with reported SSCs using MoS_2 based electrode materials.

No.	Supercapacitor	Bending state	Capacitance Retention (%)	Ref.
1.	Ag-3D graphene foam (SSC)	10 mm radius	96.77 %	14
2.	Graphene aerogel (SSC)	90°	95-100%	15
3.	Au-graphene film (SSC)	Compressive bending	98 %	16
4.	Ti ₃ C ₂ MXene (ASC)	90°	80 %	17
5.	MoS ₂ -graphene (SSC)	High bend state	Slight reduction	18
6.	1T MoS ₂ nanosheet (SSC)	180°	94.9 %	19
7	1T MoS ₂ QSs (SSC)	180°	98 %	This work

Table S3: Electrochemical performances of 2D MoS_2 QSs based SSC to that of reported flexible supercapacitors at different bending states.

References

- C. Han, Y. Zhang, P. Gao, S. Chen, X. Liu, Y. Mi, J. Zhang, Y. Ma, W. Jiang and J. Chang, *Nano Letters*, 2017, **17**, 7767–7772.
- 2 J. W. Park, W. Na and J. Jang, *Journal of Materials Chemistry A*, 2016, 4, 8263–8271.
- 3 K. Krishnamoorthy, S. M. S. P., P. Pazhamalai, V. K. Mariappan, Y. S. Mok and S.-J. Kim, *Journal of Materials Chemistry A*, 2019, **7**, 18950–18958.
- 4 S. Sahoo, K. Krishnamoorthy, P. Pazhamalai, V. K. Mariappan, S. Manoharan and S. Kim, DOI:10.1039/c9ta06245a.
- 5 Y. Zhang, P. Ju, C. Zhao and X. Qian, *Electrochimica Acta*, 2016, **219**, 693–700.
- R. K. Mishra, M. Krishnaih, S. Y. Kim, A. K. Kushwaha and S. H. Jin, *Materials Letters*, 2019, 236, 167–170.
- R. K. Mishra, A. K. Kushwaha, S. Kim, S. G. Seo and S. H. Jin, *Current Applied Physics*, 2019, 19, 1–7.
- 8 T. N. Y. Khawula, K. Raju, P. J. Franklyn, I. Sigalas and K. I. Ozoemena, *Journal of Materials Chemistry A*, 2016, **4**, 6411–6425.
- F. Wang, G. Li, J. Zheng, J. Ma, C. Yang and Q. Wang, *RSC Advances*, 2018, 8, 38945–38954.
- P. Pazhamalai, K. Krishnamoorthy, S. Sahoo and S. J. Kim, *Electrochimica Acta*, 2019, 295, 591–598.
- N. Islam, S. Wang, J. Warzywoda and Z. Fan, *Journal of Power Sources*, 2018, 400, 277–283.
- S. Yang, K. Zhang, C. Wang, Y. Zhang, S. Chen, C. Wu, A. Vasileff, S. Z. Qiao and L. Song, *Journal of Materials Chemistry A*, 2017, 5, 23704–23711.
- M. S. Javed, S. Dai, M. Wang, D. Guo, L. Chen, X. Wang, C. Hu and Y. Xi, *Journal of Power Sources*, 2015, 285, 63–69.

- 14 L. Manjakkal, C. G. Núñez, W. Dang and R. Dahiya, *Nano Energy*, 2018, **51**, 604–612.
- D. W. Kim, S. M. Jung and H. Y. Jung, *Journal of Materials Chemistry A*, 2020, 8, 532–542.
- 16 K. Yang, K. Cho, D. S. Yoon and S. Kim, Scientific Reports, 2017, 7, 2–9.
- 17 Z. Zhang, M. Guo, Y. Tang, C. Liu, J. Zhou, J. Yuan and J. Gu, *Nanotechnology*, 2020,
 31, 165403.
- F. Clerici, M. Fontana, S. Bianco, M. Serrapede, F. Perrucci, S. Ferrero, E. Tresso and A.
 Lamberti, ACS Applied Materials and Interfaces, 2016, 8, 10459–10465.
- X. Wang, W. Ding, H. Li, H. Li, S. Zhu, X. Zhu, J. Dai, Z. Sheng, H. Wang, X. Zhu, Y.
 Sun and S. X. Dou, *Journal of Materials Chemistry A*, 2019, 7, 19152–19160.