Supporting Information

Amorphous Molybdenum Selenide Intercalated Magnetite as Recyclable Trap for Effective Sequestration of Elemental Mercury

Zequn Yang^a, Hailong Li^{b*}, Qin Yang^b, Jiexia Zhao^b, Fanyue Meng^b, Yong Feng^c, Wenqi Qu^b, Jianping Yang^b, Kaimin Shih^{a**}

a. Department of Civil Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR,

China

b. School of Energy Science and Engineering, Central South University, Changsha, 410083, China

c. Environmental Research Institute, South China Normal University, Guangzhou, 510631, China

Revision submitted to

Journal of Materials Chemistry A

*To whom correspondence should be addressed:

TEL: +86-18670016725

E-mail: hailongli18@gmail.com

**To whom correspondence should be addressed:

TEL: +852-2859-2973

Email: <u>kshih@hku.hk</u>

Sorbent characterizations. The crystallinity of the sorbents was analyzed using X-ray diffraction (XRD, D8 Bruker AXS) with 20 from 10° to 80° in Cu α (λ = 0.15406 nm) radiation. A vibrating sample magnetometer (VSM, SQUID) was employed to characterize the magnetization of the sorbents. A scanning electron microscopy (SEM, FEI-50, USA) was adopted to characterize the morphologies of the sorbents. The amorphism of the MoSe_x was further evidenced by a transmission electron microscopy (TEM, JEOL 2100F) at 200 kV. The Brunauer-Emmett-Teller (BET) surface area of the sorbents was determined by the N₂ adsorption and desorption method with a BET analyzer (ASAP 2020, Micromeritics, USA). The Raman spectroscopy (LabRAM HR800, HORIBA JOBIN YVON S.A.S) was recorded to further analyze the bond vibrations in the sorbents. With a reference of the C 1s binding energy value of 284.8 eV, X-ray photoelectron spectroscopy (XPS) spectra (Thermo ESCALAB 250Xi) were recorded for fresh and spent MoSe_x(inter)Fe₃O₄ [the spent MoSe_x(inter)Fe₃O₄ was obtained by pretreating fresh MoSe_x(inter)Fe₃O₄ under 500 µg m⁻³ Hg⁰ for 12 h].

Kinetic models. pseudo-first-order and pseudo-first-order kinetic models were chosen to study the Hg^0 uptake rate over $MoSe_x(inter)Fe_3O_4$. In the pseudo-first-order model, the Hg adsorption rate was proportional to the difference between the equilibrium capacity and the adsorbed amount at any time, as described as follows:

$$\frac{\mathrm{d}Q_t}{\mathrm{d}t} = k_1(Q_e - Q_t) \tag{S1}$$

Equation (3) could be modified to the following equation based on the initial conditions of t=0, $Q_t=0$:

$$Q_t = Q_e (1 - e^{-k_1 t})$$
(S2)

where the pseudo-first-order kinetic constant (k_1, \min^{-1}) can be determined by fitting the adsorption breakthrough curve.

The pseudo-second-order model represents that the surface diffusivity is inversely proportional to the square of concentration variation on sorbent surface, which could be described by equation (S3):

$$\frac{dQ_t}{dt} = k_2 (Q_e - Q_t)^2 \tag{S3}$$

Equation (S3) could be modified to the following equation based on the initial conditions of t=0, Q_t =0:

$$\frac{t}{Q_t} = \frac{1}{k_2 Q_e^2} + \frac{1}{Q_e} t$$
(S4)

where the pseudo-second-order kinetic constant (k_2 , mg g⁻¹ min⁻¹) can be determined by fitting the adsorption breakthrough curve.

Thermodynamics. The activation energy for Hg^0 adsorption over $MoSe_x(inter)Fe_3O_4$ was determined by Arrhenius equation with the assistance of k_2 :

$$\ln k_2 = \frac{E_a}{R} \left(\frac{1}{T}\right) + C \tag{S5}$$

in which $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$, T (K) is the reaction temperature, and the activation energy (E_a, kJ mol⁻¹) could be hence obtained by simulating a linear relationship between different ln k₂ and 1/T.

Mercury temperature programmed desorption/decomposition (Hg-TPD). To properly determine the Hg⁰ species over Hg-laden MoSe_x(inter)Fe₃O₄, a Hg-TPD test was conducted. In a typical procedure, 10 mg of MoSe_x(inter)Fe₃O₄ mixed with 500 mg of SiO₂ was pretreated in the presence of 500 μ g m⁻³ of Hg⁰ feed for a continuous 30 min at 50 °C. Then, the Hg⁰ feed was cut off and the Hgladen sorbent was purged by pure N₂ until the outlet Hg⁰ concentration equaled zero. The Hg-TPD test was hence started from 50 °C to 450 °C with a heating rate of 10 °C min⁻¹ to monitor the possible decomposition of both HgSe and HgO. The outlet Hg⁰ concentration was unceasingly recorded by the mercury analyzer. List of Tables:

 Table S1. Experimental conditions.

 Table S2. Adsorption performance comparison of various magnetic sorbents.

Experiments	Materials	Carrier gas (1 L min ⁻¹)	Reaction temperature (°C)	Mass loaded (mg)	C _{in} (μg m ⁻³)
Set I	Bare Fe ₃ O ₄ ; Bare MoSe _x ; MoSe _x /Fe ₃ O ₄ ; MoSe _x (inter)Fe ₃ O ₄	Pure N ₂	50	10	500
Set II	MoSe _x (inter)Fe ₃ O ₄	Pure N ₂	25-125	10	500
Set III	MoSe _x (inter)Fe ₃ O ₄	Pure N ₂ ; N ₂ + 4%-20% O ₂ ; N ₂ +0.1%-1% SO ₂ (+4% O ₂); N ₂ +8%-20% H ₂ O (+4% O ₂)	50	10	500
Set IV	MoSe _x (inter)Fe ₃ O ₄	Pure N ₂	50	10	50-1500
Set V	MoSe _x (inter)Fe ₃ O ₄	Pure N ₂	50	2-50	500
Set VI	MoSe _x (inter)Fe ₃ O ₄	Pure N ₂	50	10	500
Set VII	Recycled MoSe _x (inter)Fe ₃ O ₄	Pure N ₂	50	As recycled	500

Table S1. Experimental conditions.

Sorbents	С _{іп} (µg m ⁻³)	Sorbent mass (mg)	Hg ⁰ adsorption capacities (µg g ⁻¹)	Hg ⁰ adsorption rate (µg g ^{-1.} min ⁻¹)	Reference
MoSe _x (inter)Fe ₃ O ₄ (100%)	500	10	134250	28.3	This work
Fe ₃ O ₄ @CuS (100%)	90	5	80730	13.2	11
FeS _x (4%)	120	200	220	0.3	36
H ₂ S modified Fe-Ti spinel (5%)	100-120	200	690	1.9	37
H ₂ S modified ilmenite (6%)	100-120	200	170	0.5	38
Mn/γ-Fe ₃ O ₄ (19%)	1000	30	3640	-	40
$(Fe_{3-x}Mn_x)_{1-\delta}O_4 \ (100\%)$	670-1130	25	5100	-	39
Magnetic zeolite supported Ag ⁰ (20%)	310	~50	44	-	41
Co-MF (100%)	85	500	30	-	42
Magnetic biochar (100%)	85	50	950	-	43

 Table S2. Adsorption performance comparison of various magnetic sorbents.

The ratios in the bracelets represent to which extent the sorbents were penetrated.