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Figure S 1: GIWAXS reciprocal lattice maps related to the 1D profiles in Figure 1a and 1b 

(sample 10/17). Fresh (a), after 1 h at 40% RH (b), after 1 h at 60% RH (c) and after 1 h back 

to 0% RH (d). 



 
Figure S 2: GIWAXS reciprocal lattice maps related to the 1D profiles in Figure 1a and 1c 

(sample 20/17). Fresh (a), after 1 h at 40% RH (b), after 1 h at 60% RH (c) and after 1 h back 

to 0% RH (d). 



 
Figure S 3: GIWAXS reciprocal lattice maps related to the 1D profiles in Figure 1a and 1d 

(sample 10/38). Fresh (a), after 1 h at 40% RH (b), after 1 h at 60% RH (c) and after 1 h back 

to 0% RH (d). 



 
Figure S 4: GIWAXS reciprocal lattice maps related to the 1D profiles in Figure 1a and 1f 

(sample 20/38). Fresh (a), after 1 h at 40% RH (b), after 1 h at 60% RH (c) and after 1 h back 

to 0% RH (d). 



 

 

Figure S 5: (a)  XRD pattterns taken before and (b) all range of the XRD presented in Figure 2 

(after degradation). The reciprocal lattice maps for all the 1D profiles in (a) and (b) are presented 

in Figure S6 and Figure S7, respectively. 



Table S 1: Attribution of diffractograms peaks of Figure S7. 

CsyFA(1-y)Pb(BrxI(1-x))3 after degradation  

Peak (q / nm-1) Attribution 

6.9, 7.1 -CsPbX3 (orthorhombic) [1] 

8 (CsxFA1-x)4Pb(BryI1-y)6∙2H2O [1], [2] 

8.2, 9.2 4H phase [1] 

8.7, 9.9 6H phase [1] 

9.9-10.1 6H and 3R/3C phases [1] 

11.6 PbO 

12.3 PbBr2 (110) [3], [4] 

12.1, 12.4, 18,5  Yellow Delta Phase (orthorhombic) [2] (CsPbX3) 

18.9 CsI [5] 

21.7-22.7 CsxFA1-xPb(BryI1-y)3∙H2O and  (CsxFA1-x)4Pb(BryI1-y)6∙2H2O [1], [2] 

24.4 CsPbX3
 [5]  

26.1 PbBr2
 [2] 



 
Figure S 6: GIWAXS reciprocal lattice maps of all the XRD presented in Figure S5(a). Pristine 

10/17 (a), pristine 17/17 (b), pristine 20/17 (c), pristine 10/38(d), pristine 17/38 (e) and pristine 

20/38 (f). 



 
Figure S 7: GIWAXS reciprocal lattice maps of all the XRD presented in Figure S5(b) and 

Figure 2. Degraded10/17 (a), degraded 17/17 (b), degraded 20/17 (c), degraded 10/38(d), 

degraded 17/38 (e) and degraded 20/38 (f). 

 



 
Figure S 8: Cross section SEM image of sample 17/17. 

 



 
Figure S 9: In-situ FEG-ESEM images during degradation of sample 10/38 upon humidity 

exposion (75 %rH). (a) fresh sample, (b) 15 min, (c) 1 h, (d) 2 h. See the Supporting Videos for 

a real-time visualization. 



 
Figure S 10: In-situ FEG-SEM in high-vacuum mode. (a) fresh sample, (b) ~1.5 h, (c) ~2.5 h, 

(d) ~4 h. See the Supporting Videos for a real-time visualization. 

 
Figure S 11: SEM images of samples 10/17, 17/17, 20/17, 10/38, 17/38 and 20/38 before (a) 

and after degradation (b). 

 



 

Figure S 12: EDS maps of Br, C, Cs, I, N, O and Pb for samples 10/17, 17/17 and 20/17, before 

and after degradation. 



 
Figure S 13: EDS maps of Br, C, Cs, I, N, O and Pb for samples 10/38, 17/38 and 20/38, 

before and after degradation. 

 

 



 
Figure S 14: Before and after degradation XPS survey scan of samples 10/17 (a), 17/17 (b), 

20/17 (c), 10/38 (d), 17/38 (e) and 20/38 (f). 

 

Figure S 15: Hhigh resolution XPS Br 3d core level spectra of pristine samples  



 
Figure S 16: High resolution XPS I 3d core level spectra of pristine samples. 



 
Figure S 17:High resolution XPS Cs 3d spectra of samples of pristine samples . 



 
Figure S 18: High resolution XPS Pb 4f core level spectra of samples of pristine samples. 

 

 

Figure S 19: Before and after degradation high resolution XPS C 1s core level spectra of 

samples 10/17 (a), 17/17 (b), 20/17 (c), 10/38 (d), 17/38 (e) and 20/38 (f). Deconvolution peaks 

are attributed to C-H originated from ex-situ absorbed hydrocarbon (blue), C-N bond (orange), 

conjugated N-C=N (green) and C=O/C-O bond (purple). 



 

 

Figure S 20: Before and after degradation high resolution XPS O 1s core level spectra of 

samples 10/17 (a), 17/17 (b), 20/17 (c), 10/38 (d), 17/38 (e) and 20/38 (f). Deconvolution peaks 

are attributed to C=O/C-O, carbonate (blue), PbO (orange) O-H bond in Pb(OH)2 (green) and 

adsorbed H2O (purple). 

 

 

 

 

Table S 2: Ratio between the deconvolution areas for Br 3d and I 3d high resolution XPS 

spectra of the degraded samples. 

Br 3d Area ratio 

Br(blue)/Br(orange) 

10/17 17/17 20/17 

0.8 2.5 1.1 

10/38 17/38 20/38 

3.4 1.5 0.8 

I 3d Area ratio 

I(blue)/I(orange) 

10/17 17/17 20/17 

0.3a 0.7 1.0 

10/38 17/38 20/38 

0.6 0.5 0.4 

a I (orange) area is the sum of orange and green curves in Figure 7(b).  

 

 

Table S 3: Before and after degradation (Br3d+I3d)/Pb4f and (Br3d+I3d)/Cs3d XPS peak area 

ratio of the degraded samples. 

(Br3d+I3d)/Pb4f 

Before After 



10/17 17/17 20/17 10/17 17/17 20/17 

3.2 3.1 3.0 1.9 1.7 1.7 

10/38 17/38 20/38 10/38 17/38 20/38 

3.6 3.5 3.2 1.5 1.5 1.6 

(Br3d+I3d)/Cs3d 

Before After 

10/17 17/17 20/17 10/17 17/17 20/17 

33.7 19.2 15.4 17.8 7.2 6.4 

10/38 17/38 20/38 10/38 17/38 20/38 

33.3 20.0 12.7 13.6 8.5 6.4 

 

 
Figure S 21: Ratio of the peak areas from high resolution XPS spectra.  (a) Br3d/Pb4f, (b) 

I3d/Pb4f, (c)Br3d/Cs3d and (d) I3d/Cs3d. 
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