Sodium Phthalate as an Anode Material for Sodium Ions Batteries:

Effect of the Bridging Carbonyl Group

Liang-Yu Wang,^a Chao Ma,^a Xiao Wei,^a Baobao Chang,^b Kai-Xue Wang^{*,a} and Jie-

Sheng Chen^a

^aShanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of

Chemistry and Chemical Engineering, Frontiers Science Center for Transformative

Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

^bKey Laboratory of Materials Processing and Mold of Ministry of Education,

Zhengzhou University, Zhengzhou, 450001, P. R. China

Corresponding Author

* E-mail Address: k.wang@sjtu.edu.cn

Figure S1. Cycling performance of sodium phthalate at a current density of 50 mA

 g^{-1}

Figure S2. Calculated HOMO plots and spatial structure of molecule SCID with

different uptake amounts of sodium.

Figure S3. Spatial structure of SCID after recrystallization and sodium ion transfer

process

Figure S4. Cycling performance of SCID at a current density of 50 mA g^{-1}

Figure S5. ATR-FTIR spectrum of pure SCID, discharged to 0.5V, 0.01 V and

charged to 3.0 V

Figure S6. Galvanostatic discharge/charge profiles of SDTC at a current density of 50

mA g^{-1} :

Figure S7. the rate capabilities of SCID

Figure S8. X-ray diffraction patterns of SCID@CNT, SCID, and CNT.

Figure S9. (a) SEM and (b) TEM images of MWCNTs,

Figure S10. N₂ adsorption/desorption isotherms and pore size distribution of CNT

and SCID@CNT.

Figure S11. Electrochemical impedance spectrum and equivalent circuit diagram of

the SCID@CNT and SCID electrodes after first cycling

Figure S12. Synthesis route diagram of the SCID

Insertion conditions	Vacuum	Organic solvents (DMSO)	Inorganic solvents (H ₂ O)
Insertion voltage (Na ₄ SCID)	0.97 V	0.33 V	0.33 V
Insertion voltage (Na ₂ SCID)	1.05 V	1.42 V	1.44 V

 Table S1. Voltage under different sodium-insertion conditions

0		1			
	Carbon	Discharge		Capacity (mAh	
Materials	additives	capacity 1st/2nd	Rates	g ⁻¹)/ Cycle	Ref.
	[wt%]	$(mAh g^{-1})$		number	
GO-CADs	20% CB	293	20 mA g ⁻¹	~130/100	1
(COONa) ₂ Na ₂ BDC	35% SP	305/160	20 mA g ⁻¹	130/20	2
ALD20	10% CB	285	0.1 C	225/100	3
SSDC	40% SP	247	1000 mA g ⁻	112/400	4
SPT	50% AB	242	20 mA g ⁻¹	68/50	5
BDT-G	40% AB	217	0.2 C	175/70	6
HA	10% SP	163	40 mA g ⁻¹	133/200	7
Na ₂ PDS	30% SP	309/224.9	100 mA g ⁻¹	183/150	8
Na ₂ DBQ	30% CB	398/265	0.1 C	231/50	9
PTCDA	20% SP	135/145	200 mA g ⁻¹	100/200	10
PI	30% SP	120/122	50 mA g ⁻¹	86/100	11
SCID@C NT	20% SP	476/252	50 mA g ⁻¹	182/100	This work

Table S2 Electrochemical performances of SCID@CNT compared to references of organic-based active materials and composites.

GO-CAD: graphene oxide-croconic acid disodium salt

(COONa)₂Na₂BDC: 1,2,4,5-tetrasodiumterephthalate

ALD20: Disodium terephthalate electrode was coated through the atomic layer deposition (ALD) method for 20 cycles

SSDC: sodium 4,4'-stilbene-dicarboxylate

SPT: sulfur-containing dithiin ring, dibenzo[b,i]thianthrene-5,7,12,14-tetrone

BDT-G: 4,8-dihydrobenzo[1,2-b:4,5-b0] dithiophene-4,8-dione-graphene

HA: Humic acid

Na₂PDS: poly (2,5-dihydroxy-p-benzoquinonyl sulfide)

Na₂DBQ: Disodium 2,5-dihydroxy-1,4-benzoquinone

PTCDA: 3,4,9,10-perylene-tetracarboxylicacid-dianhydride

PI: polyimide

S13. Coordinates of molecular structures

All coordinates are reported as XYZ Cartesian coordinates. Converged geometries and the thermochemistriy were also obtained from M06/6-31+G(d,p) level of theory. They are stated in Hartrees units. All energies reported were calculated using the GAUSSIAN 09 Revision-D.01 computational chemistry package.

(a)

	Element Symbol	Coordinates (Angstroms)		
Center Number		Х	Y	Z
1	С	-3.79629	-0.50445	-0.41317
2	С	-3.70387	0.735007	0.26166
3	С	-2.46072	1.36218	0.380895
4	С	-1.29406	0.776363	-0.12427
5	С	-2.62193	-1.07386	-0.93828
6	С	1.294062	0.776354	0.124121
7	С	1.384517	-0.45758	0.788728
8	С	2.621879	-1.07389	0.938172
9	С	3.796269	-0.50448	0.413116
10	С	3.703884	0.73498	-0.26172
11	С	2.460743	1.362166	-0.38099
12	С	-5.07418	-1.2841	-0.63304
13	С	-4.91831	1.404639	0.861288
14	С	4.918356	1.404599	-0.8613
15	С	5.07414	-1.28414	0.633044
16	0	-6.2189	-0.87212	-0.19671
17	0	-5.23416	1.07125	2.04142
18	Ο	5.234349	1.071087	-2.04135
19	Ο	4.980381	-2.37544	1.275225
20	Ο	5.594568	2.163205	-0.10779
21	Na	7.193057	0.835184	-0.96536
22	0	6.218915	-0.87207	0.196925

Standard orientation

23	Na	7.102103	-2.71161	1.145885
24	О	-5.59465	2.163117	0.10777
25	Na	-7.19296	0.835084	0.965701
26	О	-4.98048	-2.37531	-1.27539
27	Na	-7.10218	-2.71155	-1.14583
28	Н	-2.38982	2.325065	0.876058
29	Н	-2.70453	-2.01609	-1.46664
30	Н	0.497931	-0.92026	1.20919
31	Н	2.704453	-2.01612	1.466523
32	Н	2.389874	2.325057	-0.87615
33	С	0.000004	1.528771	-0.0001
34	О	0.000004	2.755585	-5.3E-05
35	С	-1.38456	-0.45757	-0.78888
36	Н	-0.49799	-0.92025	-1.20939

Zero-point Energy correction= 0.205630 Thermal correction to Energy= 0.233581 Thermal correction to Enthalpy= 0.234525 Thermal correction to Free Energy= 0.141745 Electronic Energy (EE) + Zero-point Energy= -1977.816350 Electronic Energy (EE) + Thermal Energy Correction= -1977.787455 Electronic Energy (EE) + Thermal Enthalpy Correction= -1977.787455 Electronic Energy (EE) + Thermal Free Energy Correction= -1977.880236

(b)

Standard orientation

Center Number	Element Symbol	Coordinates (Angstroms)			
		X	Y	Z	
1	С	3.334286	0.252519	-0.60904	
2	С	3.534999	-0.92415	0.181931	
3	С	2.40253	-1.80172	0.301062	
4	С	1.129643	-1.40433	-0.06528	
5	С	0.902512	-0.10862	-0.64876	

6	С	2.087573	0.568792	-1.07796
7	С	-0.26712	0.733473	-0.60024
8	О	-0.08204	2.014053	-0.60549
9	С	4.484466	1.140758	-0.96983
10	С	4.780672	-1.16514	0.907639
11	О	5.551536	0.610342	-1.43564
12	О	5.438271	-0.17528	1.439228
13	О	5.290948	-2.35984	0.919685
14	Na	5.517927	-1.67794	-1.40203
15	О	4.380521	2.375539	-0.66886
16	Na	6.451366	1.601864	0.460321
17	Н	2.541137	-2.75197	0.80966
18	Н	0.291818	-2.04466	0.189084
19	Н	1.97629	1.372239	-1.80563
20	Na	7.062013	-1.6248	2.088099
21	Na	1.987132	2.830598	-0.09729
22	С	-1.64343	0.214903	-0.49465
23	С	-2.01415	-1.08019	-0.91616
24	С	-2.65465	1.056752	0.003492
25	С	-3.33004	-1.50415	-0.81048
26	Н	-1.27779	-1.73789	-1.36553
27	С	-3.97907	0.636655	0.120723
28	Н	-2.38198	2.06211	0.304536
29	С	-4.34182	-0.67188	-0.2855
30	Н	-3.61278	-2.49534	-1.14533
31	С	-4.99406	1.601572	0.686743
32	С	-5.72345	-1.2572	-0.21886
33	О	-5.20596	1.556615	1.935796
34	О	-5.64414	2.313918	-0.13501
35	О	-5.87415	-2.45074	-0.63662
36	О	-6.74028	-0.59519	0.242045
37	Na	-7.97254	-2.41232	-0.19653
38	Na	-7.29206	1.42367	1.105881

Zero-point Energy correction= 0.204860

Thermal correction to Energy= 0.236639

Thermal correction to Enthalpy= 0.237583

Thermal correction to Free Energy= 0.138156

Electronic Energy (EE) + Zero-point Energy= -2302.454289

Electronic Energy (EE) + Thermal Energy Correction= -2302.422509

Electronic Energy (EE) + Thermal Enthalpy Correction= -2302.421565

Electronic Energy (EE) + Thermal Free Energy Correction= -2302.520993

Coordinates (Angstroms) Center Number Element Symbol Х Y Z 1 С 0.17029 -3.2805 0.339478 2 С -3.48499 -1.14425 -0.13084 3 С -2.33914 -1.94785 -0.31871 4 С -1.04755 -1.44406 -0.17978 5 С -0.82095 -0.10235 0.235106 С 6 0.609706 0.601439 -1.98846 7 С 0.38695 0.722436 0.102815 8 0 0.174622 2.006591 -0.07315 9 С -4.36697 1.176278 0.527538 10 С -0.50983 -4.84249 -1.66218 Ο -5.55549 0.84139 11 0.792947 12 0 -5.42501 -1.54499 -1.19711 Ο 13 -5.39737 -2.54197 0.237499 14 Na -6.46178 -1.08582 1.707943 15 0 -4.0986 0.333428 2.408387 16 Na -6.91829 0.531491 -1.28405 17 Η -2.46996 -2.96799 -0.67 18 Η -0.21521 -2.07457 -0.47121 19 Η -1.85749 1.546637 1.130351 20 Na -7.19425 -1.21412 -2.7020421 Na -1.79327 2.820368 -0.62112 22 С 1.716602 0.12138 0.202128 23 С 2.0806 -1.1114 0.572459 24 С 2.802877 1.075112 -0.22314 25 С 3.388828 -1.54873 0.547049 Η 26 1.321644 -1.77241 0.976675 27 С 4.109129 0.637836 -0.25488 28 Η 2.573774 2.116877 -0.41825 29 С 4.443943 -0.72382 0.056713

3.629604

0.876138

-2.55633

Standard orientation

(c)

30

Η

31	С	5.248514	1.617286	-0.37452
32	С	5.805176	-1.25925	-0.03755
33	Ο	5.40674	2.309917	-1.40819
34	Ο	6.109032	1.586812	0.595684
35	Ο	6.221794	-2.04496	0.913548
36	Ο	6.617577	-0.91727	-0.99061
37	Na	8.151235	-2.33189	-0.14127
38	Na	7.396078	1.179398	-1.36192
39	Na	-6.35198	2.941932	0.859324
40	Na	5.69243	-0.00091	2.136212

Zero-point Energy correction= 0.205824

Thermal correction to Energy= 0.241991

Thermal correction to Enthalpy= 0.242935

Thermal correction to Free Energy= 0.133161

Electronic Energy (EE) + Zero-point Energy= -2627.084805

Electronic Energy (EE) + Thermal Energy Correction= -2627.048639

Electronic Energy (EE) + Thermal Enthalpy Correction= -2627.047694

Electronic Energy (EE) + Thermal Free Energy Correction= -2627.157469

References

- 1. C. Luo, Y. Zhu, Y. Xu, Y. Liu, T. Gao, J. Wang and C. Wang, *J. Power Sources*, 2014, **250**, 372-378.
- A. Abouimrane, W. Weng, H. Eltayeb, Y. Cui, J. Niklas, O. Poluektov and K. Amine, *Energy Environ. Sci.*, 2012, 5, 9632.
- L Zhao, J. Zhao, Y-S Hu, H. Li, Z. Zhou, M. Armand and L. Chen, *Adv. Eng. Mater*, 2012, 2, 962–965.
- 4. C. Wang, Y. Xu, Y. Fang, M. Zhou, L. Liang, S. Singh, H. Zhao, A. Schober and Y. Lei, *J. Am. Chem. Soc.*, 2015, **137**, 3124-3130.
- 5. M. Yao, H. Ando and T. Kiyobayashi, *Energy Procedia*, 2016, **89**, 222-230.
- X. Chen, Y. Wu, Z. Huang, X. Yang, W. Li, L. C. Yu, R. Zeng, Y. Luo and S.-L. Chou, J. Mater. Chem. A, 2016, 4, 18409-18415.
- H. Zhu, J. Yin, X. Zhao, C. Wang and X. Yang, *Chem. Commun.*, 2015, 51, 14708-14711.
- 8. D. Wu, Y. Huang and X. Hu, Chem. Commun., 2016, 52, 11207-11210.
- Z. Zhu, H. Li, J. Liang, Z. Tao and J. Chen, *Chem. Commun.*, 2015, **51**, 1446-1448.
- 10. W. Luo, M. Allen, V. Raju and X. Ji, Adv. Eng. Mater., 2014, 4, 1400554.
- 11. F. Xu, J. Xia, W. Shi and S. Cao, Mater. Chem. Phys., 2016, 169, 192-197.