Dihydrazone-based Dynamic Covalent Epoxy Networks with High Creep Resistance, Command Degradability, and Intrinsic Antibacteria from Bioresources

Xiwei Xu,^{a,b} Songqi Ma,^{a*} Sheng Wang,^{a,c} Jiahui Wu,^b Qiong Li,^a Na Lu,^{a,c} Yanlin liu,^a Jintao Yang,^b Jie Feng,^b

Jin Zhu^a

^a Key laboratory of bio-based polymeric materials technology and application of Zhejiang province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
 ^b School of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R.

China

^c University of Chinese Academy of Sciences, Beijing 100049, P. R. China

*Corresponding authors: (Songqi Ma) E-mail masongqi@nimte.ac.cn, Tel 86-0574-87619806

Contents

Fig. S1 Non-isothermal DSC curve of HBP
Fig. S2 Non-isothermal DSC curve of HBE
Fig. S3 Strain recovery as a function of time for a) HBE-D400 and b) HBE-IPDA during the creep tests3
Fig. S4 Reprocess of HBE-IPDA at 180 °C for 45 min under 10 MPa pressure
Fig. S5 Representative tensile stress-strain curves of the original and reprocessed HBE-IPDA4
Table S1 Tensile properties of the original and reprocessed HBE-IPDA4
Fig. S6 Different degradation rate of HBE-IPDA in 0.1 M HCl water/acetone (2/8, v/v) solution at 23 °C and 50 °C.
4
Fig. S7 Degradation rate of HBE-IPDA in 0.1 M HCl water/main solvent (2/8, v/v) solution with different main
solvent at 50 °C5
Fig. S8 Degradation rate of HBE-IPDA in different acid water/acetone (2/8, v/v) solutions at 50 °C5
Fig. S10 The real-time ¹ H NMR spectra of small-molecule model dihydrazone DBH after degradation at 23 °C for
different times6
Fig. S11 The real-time 1H NMR spectra of dihydrazone CANs after degradation7
Table S2 Contact angle and swelling degree of HEB-IPDA in different solvents at 50 °C

Fig. S12 Digital photographs of static contact angle of HBE-D400.	8
Fig. S13 Digital photographs of static contact angle of HBE-IPDA	8
Calculation of topology-freezing temperatures (9
References	9

Fig. S1 Non-isothermal DSC curve of HBP.

Fig. S2 Non-isothermal DSC curve of HBE.

Fig. S3 Strain recovery as a function of time for a) HBE-D400 and b) HBE-IPDA during the creep tests.

Fig. S4 Reprocess of HBE-IPDA at 180 °C for 45 min under 10 MPa pressure.

Fig. S5 Representative tensile stress-strain curves of the original and reprocessed HBE-IPDA

Sample	Young's	Tensile	Elongation at		
	modulus	strength	break (%)		
	(MPa)	(MPa)			
Original	1991±34	95±4	8.7±0.5		
1 st reprocessed	1965±26	90±3	9.3±0.3		
2 nd reprocessed	2044±19	89±2	8.8±0.2		
3 rd reprocessed	2093±17	88±2	8.0±0.2		

Table S1 Tensile properties of the original and reprocessed HBE-IPDA.

Fig. S6 Different degradation rate of HBE-IPDA in 0.1 M HCl water/acetone (2/8, v/v) solution at 23 °C and 50 °C.

Fig. S7 Degradation rate of HBE-IPDA in 0.1 M HCl water/main solvent (2/8, v/v) solution with different main solvent at 50 °C.

Fig. S8 Degradation rate of HBE-IPDA in different acid water/acetone (2/8, v/v) solutions at 50 °C.

Fig. S9 Degradation rate of HBE-IPDA in 0.1 M HCl water/acetone solutions with different solvent ratios at 50 °C.

Fig. S10 The real-time ¹H NMR spectra of small-molecule model dihydrazone DBH after degradation at 23 °C for different times.

Fig. S11 The real-time 1H NMR spectra of dihydrazone CANs after degradation.

Main solvent	Methanol	Ethanol	THF	DMSO	DMF	Acetone									
Water/Mai n solvent, (v/v)	2/8	2/8	2/8	2/8	2/8	10/0	9/1	8/2	7/3	6/4	5/5	4/6	3/7	2/8	1/9
Contact angle (°)	28.3	36.4	20.6	24.1	41.5	83.8	74.1	67.9	62.2	51.7	42.9	39.7	34.6	28.1	23.8
Swelling degree (%)	25	9	18	21	5	1	1	5	7	9	13	17	23	27 (1*)	31

Table S2 Contact angle and swelling degree of HEB-IPDA in different solvents at 50 °C.

*: Swelling test at 23 °C

Fig. S12 Digital photographs of static contact angle of HBE-D400.

Fig. S13 Digital photographs of static contact angle of HBE-IPDA.

Calculation of topology-freezing temperatures (T_v s) and activation energies (E_a s).

Topology-freezing temperatures (T_v) and activation energies (E_a) were determined using the methodology reported in literature^{1,2}. The measured values of characteristic relaxation times (τ^*s) were plotted versus 1000/*T*. The plots were fit to the Arrhenius law in equation (1)

$$\tau^*(T) = \tau_0 * e^{E_a/RT} \tag{1}$$

(*R* : universal gas constant; 8.314 J K⁻¹ mol⁻¹)

Equation (1) can be transformed to equation (2):

$$\ln \tau^* (T) = \ln \tau_0^* + E_a / RT \tag{2}$$

For HBE-D400:

$$ln \tau^*(T) = 11.458 \times \frac{1000}{T} - 17.154$$
(3)

 $E_a/R = 11.458, E_a = 95.26 \text{ kJ mol}^{-1}$

For HBE-IPDA:

$$ln \tau^*(T) = 11.208 \times \frac{1000}{T} - 17.145$$
(4)

 $E_a/R = 11.208, E_a = 93.18 \text{ kJ mol}^{-1}$

 T_{ν} is defined to be the temperature at which the material reaches a viscosity of 10¹² Pa. The relation of the viscosity η and the τ^* is known as the Maxwell relation equation (5)

$$\eta = G \times \tau^* = (E'/2(1+\nu)) \times \tau^*$$
(5)

(G : shear modulus, E' : storage modulus, v : Poisson's ratio)

Using the Poisson's ratio (v) of epoxy resin (0.38),

$$\eta = 0.284 \times E' \times \tau^* \tag{6}$$

The storage modulus of HBE-D400 from 170 °C to 185 °C is 9.3 MPa, and that of HBE-IPDA in the same temperature range is 13.1 MPa. Because η is 10¹² Pa at T_{ν} , τ *s at T_{ν} of HBE-D400 and HBE-IPDA are calculated to be 3.9× 10⁵ s and 2.7× 10⁵ s, respectively. Using these values and equation (3) and (4), T_{ν} was computed to be 109 °C for HBE-D400 and 105 °C for HBE-IPDA.

References

¹ M. Capelot, M. M. Unterlass, F. Tournilhac, L. Leibler, ACS Macro Lett., 2012, 1, 789-792.

² C. A. Tretbar, J. A. Neal, Z. Guan, J. Am. Chem. Soc., 2019, 141, 16595-16599.