Supporting Information

Superhydrophilic porous carbon foam as self-desalting monolithic solar steam generation device with high energy efficiency

Chengbing Wang^{a,*}, Jiulong Wang^a, Zhengtong Li^a, Keyuan Xu^a, Tao Lei^b, Weike Wang^{a,*}

 ^a School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Material, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
^b School of Electronic Information and Artificial Intelligence, Shaanxi University of Science &

Technology, Xi'an, 710021, China

*Corresponding authors: wangchengbing@gmail.com, wangweike@sust.edu.cn

Fig. S1. The diagram of solar evaporation experimental device.

Fig. S2. Preparation of superhydrophilic porous carbon foam.

Fig. S3. Pore size distribution curve of the superhydrophilic porous carbon foam (SPCF).

Fig. S4. Water transport performance comparison of different materials. (a) Water transport process of carbonized bamboo, carbonized flour and SPCF; (b) Water transport process of melamine sponge.

Fig. S5. A set of images of the SPCF float on the water in less than 1 s.

Fig. S6. Camera photographs of SPCF under the weight of 1500 g ($\sim 2.07 \times 10^4$ Pa).

Fig. S8. Camera photos of steam generated under 1~3 solar irradiation of SPCF.

Fig. S9. The physical picture of SPCF wrapped by expanded polystyrene (EPS) foam (left), and the wrapped sample was placed in a beaker (right).

Fig. S10. Evaporation rate of SPCF and SPCF wrapped by EPS under 1 sun illumination. Comparison of evaporation rate of water in dark field and water under 1 sun.

Fig. S11. The measured concentrations of four primary ions in a simulated seawater sample before and after desalination.

Fig. S12. Outdoor solar water evaporation using SPCF in natural sunlight (on 18th March 2020 at the Shaanxi University of Science and Technology, Xi'an, China). (a) The surface vapor of the collection device was measured at different time, the IR camera photo of the surface temperature of (b) the whole device and (c) the SPCF were prepared at different time. Here, the temperature change of SPCF was measured at the moment just removed the outside device.

Materials	Wettability	Contact angles	Wetting time	References
Superhydrophilic porous carbon foam	Superhydrophilic	<5°	<15 ms	This paper
Carbonized daikon	Hydrophilic	_	45 ms	[1]
MOF-based hierarchical structure (MHS)	Hydrophilic	7.5°	406 ms	[2]
Plasmonic wood	Hydrophilic	_	20 s	[3]
Sugarcane stems	Hydrophilic	_	159 ms	[4]
Arched bamboo charcoal	Hydrophilic	25.3°	_	[5]
Flexible thin-film black gold membranes	Hydrophilic	26°	_	[6]
CuS/PE membrane	Hydrophilic	_	50 ms	[7]
2D Ti ₃ C ₂ MXene membrane	Hydrophilic	14.5°	_	[8]
MDPC/SS mesh	Hydrophilic	11.5°	_	[9]
CNT/GO, GO/NFC	Hydrophilic	48°, 23°	_	[10]
Multifunctional porous graphene	Hydrophilic	74°	_	[11]
Mushrooms	Hydrophilic	_	360 s	[12]
Flexible thin-film membrane	Hydrophobic	87±3°	_	[13]
Two-dimensional flexible bilayer Janus membrane	Hydrophobic	110°	_	[14]
Durable monolithic polymer foam	Hydrophobic	130°	—	[15]
Fe ₃ O ₄ @C film	Hydrophobic	118.01°±1.51°	_	[16]
Black polyurethane sponges	Hydrophobic/ Hydrophilic	120°/60°	_	[17]

Table S1. The wettability, contact angles and wetting time for different solar absorber materials.

Materials	Evaporation rate (kg m ⁻² h ⁻¹)	References
Superhydrophilic porous carbon foam (SPCF)	1.57	This paper
Carbonized mushrooms	1.475	[12]
Carbonized flour	1.0	[18]
Carbonized kelp	1.351	[19]
Hollow-carbon-nanotubes aerogels	1.3728	[20]
Soot-deposited Janus fabrics	1.375	[21]
Plasmonic wood	< 1.3	[3]
Sugarcane stems	1.57	[4]
Carbonized daikon	1.57	[1]
Arched bamboo charcoal	1.32	[5]
Carbonized melamine foam	1.27	[22]
2D Ti_3C_2 MXene membrane	1.31	[8]
Porous graphene	1.50	[23]
3D-print evaporator	1.25	[10]
Fe ₃ O ₄ @C film	1.07	[16]
A durable monolithic polymer foam	1.1687	[15]
CuS/PE membrane	1.021	[7]
MoO _x HNS membrane	1.255	[24]
The bilayer CP/P evaporator	1.20	[25]
Graphene membranes	1.37	[26]

Table S2. The evaporation rate for different materials.

References

- M. M. Zhu, J. L. Yu, C. L. Ma, C. Y. Zhang, D. X. Wu, H. T. Zhu, Sol. Energy Mater. Sol. Cells 2019, 191, 83-90.
- [2] Q. L. Ma, P. F. Yin, M. T. Zhao, Z. Y. Luo, Y. Huang, Q. Y. He, Y. F. Yu, Z. Q. Liu, Z. N. Hu, B. Chen, H. Zhang, *Adv. Mater.* 2019, **31**, 1808249.
- [3] M. W. Zhu, Y. J. Li, F. J. Chen, X. Y. Zhu, J. Q. Dai, Y. F. Li, Z. Yang, X. J. Yan, J. W. Song, Y. B. Wang, E. Hitz, W. Luo, M. H. Lu, B. Yang, L. B. Hu, *Adv. Energy Mater.* 2018, 8, 1701028.
- [4] J. Liu, Q. L. Liu, D. L. Ma, Y. Yuan, J. H. Yao, W. Zhang, H. L. Su, Y. S. Su, J. J. Gu, D. Zhang, J. Mater. Chem. A 2019, 7, 9034-9039.
- [5] Z. T. Li, C. B. Wang, T. Lei, H. L. Ma, J. B. Su, S. Ling, W. Wang, Adv. Sustainable Syst. 2019, 3, 1800144.
- [6] K. Bae, G. Kang, S. K. Cho, W. Park, K. Kim, W. J. Padilla, Nature Commun. 2015, 6, 10103.
- [7] M. Y. Shang, N. Li, S. D. Zhang, T. T. Zhao, C. Zhang, C. Liu, H. F. Li, Z. Y. Wang, ACS Appl. Energy Mater. 2017, 1, 56-61.

- [8] J. Q. Zhao, Y. W. Yang, C. H. Yang, Y. P. Tian, Y. Han, J. Liu, X. T. Yin, W. X. Que, J. Mater. Chem. A 2018, 6, 16196-16204.
- [9] S. N. Ma, W. Qarony, M. I. Hossain, C. T. Yipc, Y. H. Tsang, Sol. Energy Mater. Sol. Cells 2019, 196, 36-42.
- [10] Y. J. Li, T. T. Gao, Z. Yang, C. J. Chen, W. Luo, J. W. Song, E. Hitz, C. Jia, Y. B. Zhou, B. Y. Liu, B. Yang, L. B. Hu, *Adv. Mater.* 2017, **29**, 1700981.
- [11] Y. Ito, Y. Tanabe, J. H. Han, T. Fujita, K. Tanigaki, M. W. Chen, Adv. Mater. 2015, 27, 4302-4307.
- [12] N. Xu, X. Z. Hu, W. C. Xu, Xi. Q. Li, L. Zhou, S. N. Zhu, J. Zhu, Adv. Mater. 2017, 29, 1606762.
- [13] H. R. Li, Y. R. He, Z. Y. Liu, B. C. Jiang, Y. M. Huang, Energy 2017, 139, 210-219.
- [14] Y. B. Yang, X. D.Yang, L. N. Fu, M. C. Zou, A. Y. Cao, Y. P. Du, Q. Yuan, C. H. Yan, ACS Energy Lett. 2018, 3, 1165-1171.
- [15] Q. M. Chen, Z. Q. Pei, Y. S. Xu, Z. Li, Y. Yang, Y. Wei, Y. Ji, Chem. Sci. 2018, 9, 623-628.
- [16] R. Chen, K. H. Zhu, Q. M. Gan, Y. Q. Yu, T. Q. Zhang, X. W. Liu, M. M. Ye, Y. D.Yin, *Mater. Chem. Front.* 2017, 1, 2620-2626.
- [17] S. N. Ma, C. P. Chiu, Y. J. Zhu, C. Yi. Tang, H. Long, W. Qarony, X. H. Zhao, X. M. Zhang, W. H. Lo, Y. H. Tsanga, *Appl. Energy* 2017, 206, 63-69.
- [18] Z. T. Li, C. B. Wang, Z. Y. Li, L. Deng, J. B. Su, J. Shi, M. An, Energy Technology 2019, 9, 1900406.
- [19] Y. W. Lin, W.P. Zhou, Y.S. Di, X.W. Zhang, L. Yang, Z. X. Gun, AIP Advances 2019, 9, 055110.
- [20] P. Mu, Z. Zhang, W. Bai, J. G. He, H.X. Sun, Z. Q. Zhu, W. D. Liang, A. Li, *Adv. Energy Mater.* 2019, 9, 1802158.
- [21] S.W. Gao, X.L. Dong, J. Y. Huang, J. N. Dong, F. D. Maggio, S. C. Wang, F. Guo, T.X. Zhu, Z. Chen, Y. K. Lai, *Global Challenges* 2019, 8, 1800117.
- [22] X. F. Lin, J. Y. Chen, Z. K. Yuan, M. J. Yang, G. J. Chen, D. S. Yu, M. Q. Zhang, W. Hong, X. D. Chen, J. Mater. Chem. A 2018, 6, 4642-4648.
- [23] Y. S. K. Z. Ito, Y. C. Tanabe, J. H. Han, T. K. S. Fujita, K. S. M. Tanigaki, M. W. Chen, *Adv. Mater*. 2015, 27, 4302-4307.
- [24] Q. C. Lu, Y. Yang, J. R. Feng, X. Wang, Sol. RRL 2019, 3, 1800277.
- [25] T. T. Gao, Y. J. Li, C. J. Chen, Z. Yang, Y. D. Kuang, C. Jia, J. W. Song, E. M. Hitz, B. Y. Liu, H. Huang, J. Y. Yu, B. Yang, L. B. Hu, *Small Methods* 2019, **3**, 1800176.
- [26] G. J. Li, W. C. Law, K. C. Chan, Green Chem. 2018, 20, 3689-3695.