Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Controllably Electrolytic Formation of Ti₂O as Efficient Sulfur Host

in lithium-sulfur (Li-S) battery

 $Ruxing\ Wang^a,\ Kangli\ Wang^{a^*},\ Hongwei\ Tao^a,\ Wenjie\ Zhao^b,\ Mao\ Jiang^b,\ Jie\ Yan\ ^b,\ Kai\ Jiang^{a^*}$

^aState Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of

Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan,

Hubei 430074, China.

^bState Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials

Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074,

China.

E-mail: kjiang@hust.edu.cn; klwang@hust.edu.cn

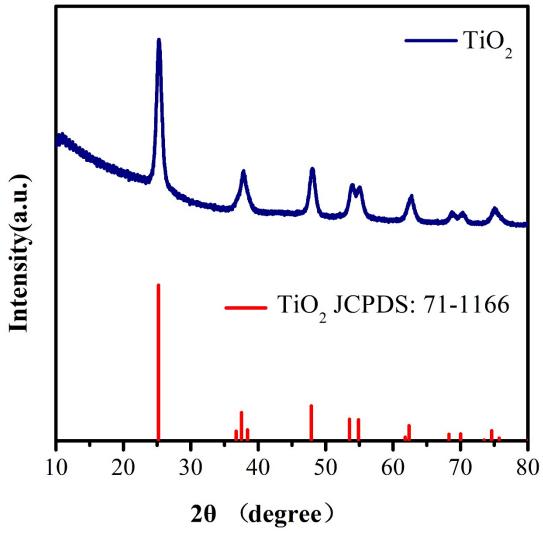
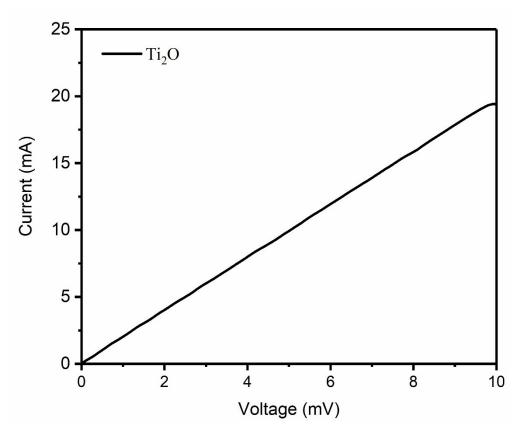
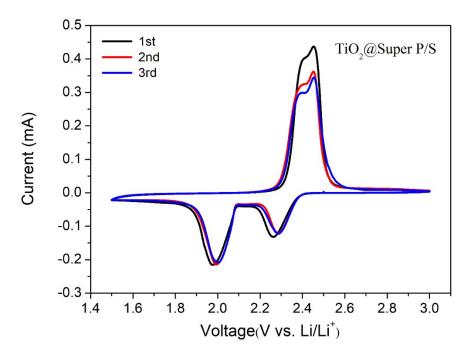




Figure S1. XRD patterns of the pristine TiO₂

Figure S2. Electronic conductivity of the as-prepared Ti₂O. Based on the I-V analysis, the electronic conductivity of Ti₂O is calculated to be 296.8 S m⁻¹.

Figure S3. CV curves of the initial four cycles of the TiO_2 @super P/S cathode at a scan rate of 0.1 mV s⁻¹.

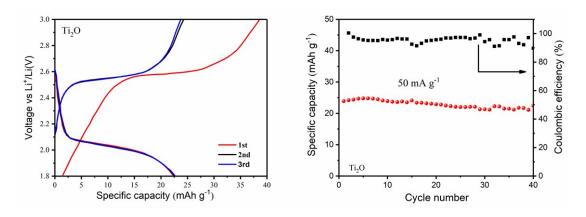


Figure S4 Charge/discharge curves of the Ti_2O cathode and the corresponding cycle performance at 50 mA $g^{\text{-}1}$.

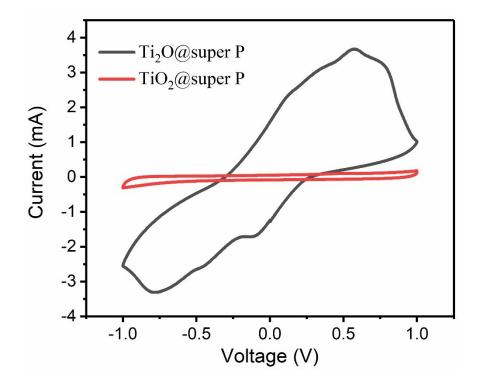


Figure S5. CV of symmetric cells. Fig. S7 Cyclic voltammograms of Li_2S_4 symmetric cells.

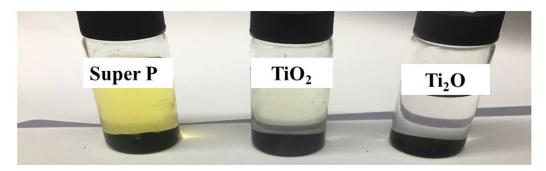


Figure S6. Li₂S₆ solution with Super P, TiO₂ or Ti₂O after resting for 1 h.

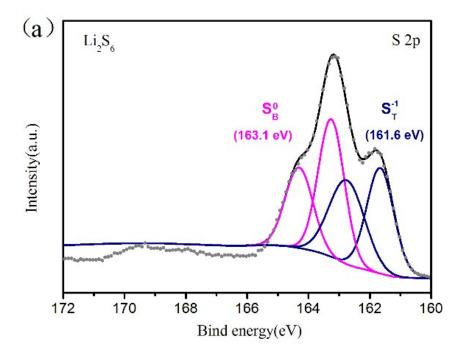


Figure S7. S 2p XPS spectra of Li₂S₆.

Theoretical calculation: The adsorptions of Li_2S_4 on Ti_2O and TiO_2 surfaces were investigated by the Vienna Ab-initio Simulation Package (VASP). The exchange-correlation function was described by the Perdew-Burke-Ernzerhof (PBE) of the generalized gradient approximation (GGA). The PAW pseudo-potential was used to describe the interaction between valence electrons and the ionic core. 3×3 {001} supercell with two Ti-O layers and 2×3 {101} supercell with eight Ti-O layers were used to simulate the surfaces of Ti_2O and TiO_2 . The plane-wave basis with energy cutoff

of 400 eV and the energy convergence of 1.0×10^{-5} eV were applied to the calculations of geometry optimization. Considering the computational cost, the geometry optimization calculations were only performed at the gamma point.

In the test, 0.05 M $\rm Li_2S_6$ solution was placed in the left side of the cell, equal amount blank solvent was put in the right side. A $\rm G/Ti_2O$ or PP separator was placed at the bridge of the device.

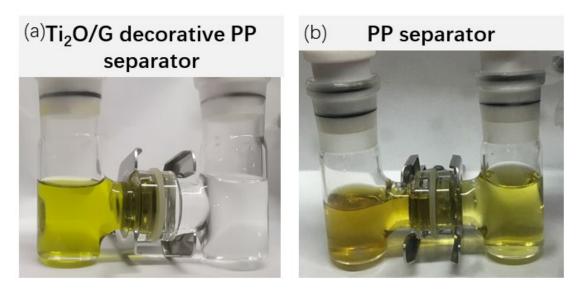


Figure S8. The verification of polysulfide immobilization with G/Ti₂O decorated separator (a) and commercialized PP separator (b) after resting for 5 hours.

The illustration of the fitting unit of the equivalent circuits for EIS fitting:

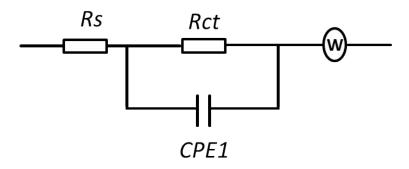
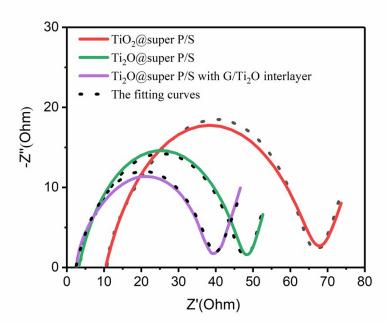



Figure S9. The equivalent circuits for EIS fitting before cycling test.

Figure S10 The Nyquist plots of the TiO_2 @super P/S, Ti_2O @super P/S electrode and Ti_2O @super P/S with G/ Ti_2O decorated separator cathode. The lines represent the measured results, and the dots correspond to the fitting curves.

Table S1 The fitting results of the electrochemical impedance spectroscopy

	$\operatorname{Rs}\left(\Omega\right)$	Rct (\O)
TiO ₂ @super P/S	10.4	54.4
Ti ₂ O@super P/S	3.2	43.5
Ti ₂ O@super P/S with	2.4	35.4
G/Ti ₂ O decorated separator		

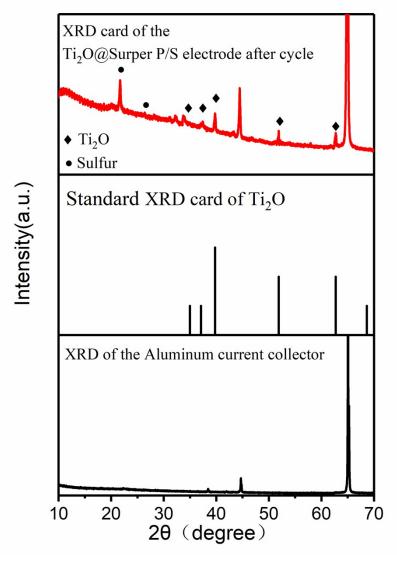
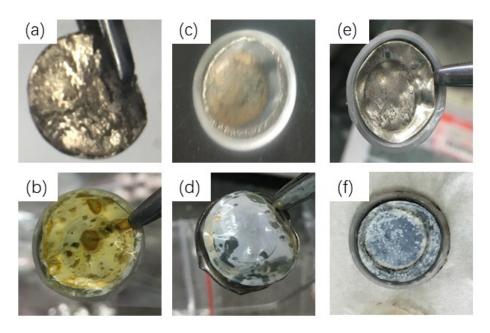
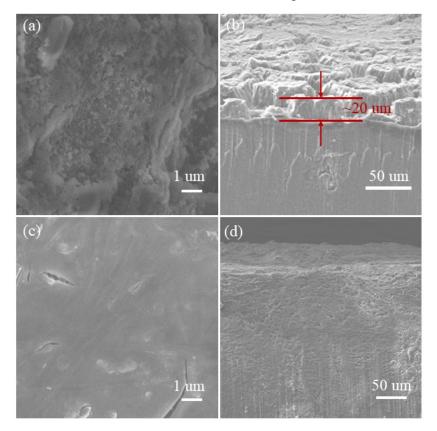




Figure S11 Ex situ XRD patterns of TiO₂@super P/S electrode after 500 cycles.

Figure S12. Lithium sheets and separators toward the side of the lithium sheet after cycled. (a) (b) TiO₂@super P/S cell, (c) (d) Ti₂O@super P/S cell, (e) (f)Ti₂O@super P/S with G/Ti₂O decorated separator

Figure S13 SEM images of battery components after tests. The surface morphologies of the Li anode that facing the TiO_2 @super P/S (a) and Ti_2O @super P/S with G/ Ti_2O decorated separator (c) cathodes, and the corresponding cross-sections (b) (d).

Table S2. Electrochemical properties comparison of our work with other Ti-Based Oxides for Lithium-Sulfur Batteries

Cathode hosts	Areal active material	Current	Initial capacity	cycles	Retention/ fading	Reference
	mass loading	Rate	$[mAh g^{-1}]$		rate [%]	
CNT@TiO _{2-x} -S [1]	~2.2	0.2	1204	150	72.01/0.19	Adv. Energy Mater. 2019
TiO_2 -Ar/S [2]	NA	0.2	1472	100	61.14/0.39	J. Mater. Chem. A, 2019
S@3S-TiO _{2-x} [3]	~0.5	0.5	903	1000	79	Angew. Chem. 2019
TiO@C-HS [4]	~1.5	0.5	1066	500	0.08	Nat. Commun, 2016
HCS@Ti ₄ O ₇ /S [5]	NA	0.5	1168	800	76/0.06	J. Mater. Chem. A, 2019
H-TiO _x @S/ppy [6]	~1.0	1.0C	693.7	1000	59.35/0.04	ACS Appl. Mater.
						Interfaces 2019
TinO _{2n-1} @C/S [7]	~2.3	1.0C	700	1000	0.06	ChemSusChem 2018
C@TiO2@C-S [8]	~2.5	0.5C	999	300	74/0.086	J. Mater. Chem. A, 2018
Ti ₂ O ₃ -MA/S [9]	~1.5	0.5C	1060	250	81.1/0.08	ACS Appl. Mater.
						Interfaces 2019
Ti ₂ O@Super P /S	~2.5	0.5C	1063	500	81.1/0.04	This work

Reference

- [1] Y. Wang, R. Zhang, J. Chen, H. Wu, S. Lu, K. Wang, H. Li, C. J. Harris, K. Xi and R. V. Kumar, *Advanced Energy Materials*, 2019, **9**, 1900953.
- [2] H.-E. Wang, K. Yin, N. Qin, X. Zhao, F.-J. Xia, Z.-Y. Hu, G. Guo, G. Cao and W. Zhang, *Journal of Materials Chemistry A*, 2019, 7, 10346-10353.
- [3] E. H. M. Salhabi, J. Zhao, J. Wang, M. Yang, B. Wang and D. Wang, *Angewandte Chemie*, 2019.
- [4] Z. Li, J. Zhang, B. Guan, D. Wang, L.-M. Liu and X. W. D. Lou, *Nature communications*, 2016, 7, 13065.
- [5] F. Wang, X. Ding, R. Shi, M. Li, Y. Lei, Z. Lei, G. Jiang, F. Xu, H. Wang and L. Jia, *Journal of Materials Chemistry A*, 2019, **7**, 10494-10504.
- [6] G. Chen, W. Zhong, Y. Li, Q. Deng, X. Ou, Q. Pan, X. Wang, X. Xiong, C. Yang and M. Liu, *ACS applied materials & interfaces*, 2019, **11**, 5055-5063.
- [7] U. Zubair, J. Amici, C. Francia, D. McNulty, S. Bodoardo and C. O'Dwyer, ChemSusChem, 2018
- [8] M. Fang, Z. Chen, Y. Liu, J. Quan, C. Yang, L. Zhu, Q. Xu and Q. Xu, *J. Mater. Chem. A*, 2018, **6**, 1630-1638.
- [9] P. Zeng, M. Chen, S. Jiang, Y. Li, X. Xie, H. Liu, X. Hu, C. Wu, H. Shu and X. Wang, *ACS applied materials & interfaces*, 2019.