Supporting Information

Rational design of an efficient descriptor for single-atom

catalysts in the hydrogen evolution reaction

Hai-Cai Huang,^a Yang Zhao,^a Jing Wang,^a Jun Li,^a Jing Chen,^{a,b} Qiang Fu,^a Yu-Xiang

Bu^{a,c} and Shi-Bo Cheng*,^a

 ^aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
^bSuzhou Institute of Shandong University, Suzhou, Jiangsu 215123, People's Republic of China
^cSchool of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China

^{*}Corresponding author: Tel: +86 0531-88363058. E-mail address: shibocheng@sdu.edu.cn. (S.B. Cheng).

Note 1

The HER activity was evaluated by calculating the reaction free energy of each step based on the computational hydrogen electrode model [S1], in which the reaction:

$$\mathrm{H}^{+}+e^{-}\rightarrow\frac{1}{2}\mathrm{H}_{2}$$

The Gibbs free energy of the adsorption of hydrogen (ΔG_{H^*}) was calculated by:

$$\Delta G_{\mathrm{H}*} = \Delta E_{\mathrm{H}} + \Delta E_{\mathrm{ZPE}} - T \Delta S_{\mathrm{H}}$$

where $\Delta E_{\rm H}$ is the hydrogen adsorption energy over different catalysts, which is defined as:

$$\Delta E_{\rm H} = E_{{\rm H}^*} - E_* - 1/2E_{{\rm H}_2}$$

The ΔE_{ZPE} is the difference in the zero-point energy between the adsorbed state and the corresponding free-standing state, which can be obtained by:

$$\Delta E_{\rm ZPE} = E_{\rm ZPE}^{\rm H} - \frac{1}{2} E_{\rm ZPE}^{\rm H_2}$$

The entropy is given by [S2]:

$$S(T) = \sum_{i=1}^{3N} \left[-R \ln(1 - e^{-\frac{hv_i}{k_B T}}) + \frac{N_A hv_i}{T} \frac{e^{-hv_i/k_B T}}{1 - e^{-hv_i/k_B T}} \right]$$

where R stands for the universal gas constant, $k_{\rm B}$ is the Boltzmann constant, h is Plank's constant, $N_{\rm A}$ is Avogadro's number, $v_{\rm i}$ represents the frequency and N is the number of adsorbed atoms. Therefore, $\Delta G_{\rm H*}$ can be calculated as:

$$\Delta G_{\mathrm{H*}} = \Delta E_{\mathrm{H}} + \Delta E_{\mathrm{ZPE}} - T \Delta S_{\mathrm{H}}$$

= $\left(E_{\mathrm{H*}} + E_{\mathrm{ZPE}(\mathrm{H*})} - T S_{\mathrm{H*}} \right) - \frac{1}{2} \left(E_{\mathrm{H}_{2}} + E_{\mathrm{ZPE}(\mathrm{H}_{2})} - T S_{\mathrm{H}_{2}} \right) - \left(E_{*} + E_{\mathrm{ZPE}(*)} - T S_{*} \right)$
= $\Delta E_{\mathrm{H}} + 0.24$

In the Volcano curve, the exchange current (i_0) base on the Nørskov's assumption

[S1] is calculated by:

$$i_0 = -ek_0 \frac{1}{1 + \exp(|\Delta G_{H^*}| / k_B T)}$$

where k_0 is the rate constant. In general, the rate constants should be different for different systems. However, in the present calculations, the k_0 are set to 1 because there are no experimental data available. Actually, such treatment has been utilized and confirmed in many previous works [S3-S5], which is reasonable to understand the activity of different catalysts qualitatively.

Fig. S1 Adsorption energies of different TM atoms on the substrates BX_2 , AX and ZrS_2 .

Fig. S2 Total and partial density of states of $M-MoS_2$.

Fig. S3 Theoretical TM-H bond lengths of different TM atoms on the substrates BX₂.

Fig. S4 Volcano curve of exchange current density i_0 as a function of the Gibbs free energy ($\Delta G_{\rm H}^*$) of (a) MoS₂; (b) MoSe₂; (c) WS₂; (d) WSe₂.

Fig. S5 A plot of the free energy of hydrogen adsorption on $M-MoS_2$ versus the shift of the *d*-band center.

Fig. S6 Partial density of states of H adsorption on M-MoS₂.

Fig. S7 Adsorption free energy of hydrogen versus the descriptor φ' for TM atoms on the substrates: (a) MoS₂; (b) MoSe₂; (c) WS₂; (d) WSe₂.

Fig. S8 Adsorption free energy of hydrogen on M-MoS₂ versus the descriptors (a) $\varphi'_{;}$ (b) φ .

Fig. S9 Adsorption free energy of hydrogen versus the descriptor φ for TM atoms on the substrates (a) MoS₂, (b) MoSe₂, (c) WS₂, (d) WSe₂, (e) GaS, (f) GaSe, (g) InS and (h) InSe in different values of d.

Fig. S10 Adsorption free energy of hydrogen versus the descriptor φ based on (a) $\theta_{d;}$ (b) θ_{v} for TM atoms on the substrate InS.

Fig. S11 Adsorption free energy of hydrogen versus the descriptor φ for TM atoms on the substrates: (a) GaS; (b) GaSe; (c) InS; (d) InSe; (e) AlX; (f) ZrS₂; (g) TlS; (h) TlSe.

Fig. S12 The relationship between the EC and the values of φ corresponding to the adsorption free energy at 0 ($\varphi(\Delta G_{H^*}=0)$) in (a) left and (b) right of the volcanic diagram.

References

- S1 J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen and S. Pandelov, J. Electrochem. Soc., 2005, 152, J23–J26.
- S2 Y. A. Zhu, D. Chen, X. G. Zhou and W. K. Yuan, Catal. Today, 2009, 148, 260-267.
- S3 X. Lv, W. Wei, H. Wang, B. Huang and Y. Dai, *Appl. Catal. B: Environ.*, 2019, 255, 117743.
- S4 G. Gao, A. P. O'Mullane and A. Du, ACS Catal., 2017, 7, 494–500.
- S5 T. He, G. Gao, L. Kou, G. Will and A. Du, J. Catal., 2017, 354, 231–235.