Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Finding Furoxan Rings

Qiong Yu,[†] Ajay Kumar Chinnam, [†] Ping Yin,[‡] Gregory H. Imler,[§] Damon A. Parrish[§] and Jean'ne M. Shreeve^{*†}

[†] Department of Chemistry, University of Idaho, Moscow, ID 83844-2343 United States, E-mail: <u>jshreeve@uidaho.edu</u>

[‡] Prof. Dr. P. Yin, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081 (P.R. China)

§ Naval Research Laboratory, 4555 Overlook Avenue, Washington, D.C. 20375, United States

Corresponding author email: jshreeve@uidaho.edu

Table of Contents

Crystallographic data	S2
Theoretical calculations	S15
¹ H and ¹³ C NMR spectra	S16
References	S25

X-ray Crystallography of 3-5, and 8

A clear colorless block of dimensions 0.190 x 0.085 x 0.060 mm³ for **3**; a colorless needle of dimensions 0.048 x 0.053 x 0.144 mm³ for **4**; a clear colorless plate of dimensions 0.305 x 0.168 x 0.057 mm³ for **5**; and a clear colorless chunk of dimensions 0.250 x 0.161 x 0.063 mm³ for **8** were each mounted on a MiteGen MicroMesh using a small amount of Cargille immersion oil. Data were collected on a Bruker three-circle platform diffractometer equipped with a SMART APEX II CCD detector. The crystals were irradiated using graphite monochromated MoK α radiation (λ = 0.71073). An Oxford Cobra low temperature device was used to keep the crystals at a constant 150(2) K during data collection.

Data collection was performed and the unit cell was initially refined using *APEX2* [v2014.3-0].¹ Data reduction was performed using *SAINT* [v7.68A]² and *XPREP* [v2014/2].³ Corrections were applied for Lorentz, polarization, and absorption effects using *SADABS* [v2008/1].⁴ The structure was solved and refined with the aid of the programs SHELXL-2014/7 within WingX.⁵ The full-matrix least-squares refinement on F2 included atomic coordinates and anisotropic thermal parameters for all non-H atoms. The H atoms were included using a riding model (Table S1).

Empirical formula	C ₃ KN ₅ O ₇	$C_3HN_5O_7$	$C_6N_8O_8$	$C_3H_4N_6O_8$
CCDC North or	3	4	3	0
CCDC Number	1908919	1968921	1968922	1968920
Formula weight	257.18	219.09	312.14	252.12
Temperature/K	293(2)	173(2)	296(2)	296(2)
Crystal system	monoclinic	orthorhombic	orthorhombic	monoclinic
Space group	$P2_1/c$	$Pna2_1$	$P2_{1}2_{1}2_{1}$	C2/c
a/Å	10.266(3)	18.1742(7)	6.754(3)	23.5598(10)
b/Å	7.180(2)	6.6529(3)	10.796(4)	6.4371(3)
c/Å	12.384(2)	6.1535(3)	15.179(6)	15.9786(7)
α/°	90	90	90	90
β/°	113.643(13)	90	90	130.7954(11)
$\gamma/^{\circ}$	90	90	90	90
Volume/Å ³	836.2(4)	744.03(6)	1106.9(7)	1834.52(14)
Ζ	4	4	4	8
$\rho_{calc} g/cm^3$	2.043	1.956	1.873	1.826
µ/mm ⁻¹	6.057	1.754	0.176	0.181
F(000)	512	440	624	1024
Crystal size/mm ³	0.190 x 0.085 x 0.060	0.048 x 0.053 x 0.144	0.305 x 0.168 x 0.057	0.250 x 0.161 x 0.063
θ range/°	4.702-74.484	4.866-74.655	2.315-30.018	2.284-30.019
	$-12 \le h \le 12$	$-21 \le h \le 22$	$-9 \le h \le 9$	$-31 \le h \le 30$
Index ranges	$-7 \le k \le 8$	$-8 \le k \le 8$	$-15 \le k \le 12$	-9≤ k ≤9
e e	$-12 \le l \le 15$	$-7 \le l \le 7$	-21≤1≤21	- 17≤1≤22
Reflections collected	5640	6540	12914	10560

Table S1. Selected crystal parameters of 3-5 and 8.

Independent reflections	1603 [$R_{int} = 0.0324$]	1465 [$R_{int} = 0.0401$]	$3152 [R_{int} = 0.0302]$	2596 $[R_{int} = 0.0269]$
Data/restraints/parameters	1603 / 0 / 146	1465/1/136	3152 / 0 / 199	2596 / 0 / 167
Goodness-of-fit on F ²	0.997	1.079	1.009	1.007
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0269,$ w $R_2 = 0.0700$	$R_1 = 0.0436,$ $wR_2 = 0.1113$	$R_1 = 0.0376,$ w $R_2 = 0.0811$	$R_1 = 0.0397,$ w $R_2 = 0.0918$
Final R indexes [all data]	$\begin{array}{l} R_1 = 0.0276, \\ wR_2 = 0.0705 \end{array}$	$R_1 = 0.0445,$ w $R_2 = 0.1122$	$R_1 = 0.0701,$ w $R_2 = 0.0933$	$R_1 = 0.0771,$ w $R_2 = 0.1073$
Largest diff. peak/hole / e Å ⁻³	0.301/-0.243	0.517/-0.195	0.234/-0.150	0.185/-0.221

Figure S1. Unit cell view for 3 along *a* axis.

Figure S2. Unit cell view for 3 along *b* axis.

Figure S3. Unit cell view for 3 along *c* axis.

Figure S4. Unit cell view for 4 along *a* axis.

Figure S5. Unit cell view for 4 along *b* axis.

Figure S6. Unit cell view for **4** along *c* axis.

Figure S7. Unit cell view for 5 along *a* axis.

Figure S8. Unit cell view for 5 along *b* axis.

Figure S9. Unit cell view for 5 along *c* axis.

Figure S10. Unit cell view for 8 along *a* axis, hydrogen bonds are marked as dotted lines.

Figure S11. Unit cell view for 8 along b axis, hydrogen bonds are marked as dotted lines.

Figure S12. Unit cell view for 8 along c axis, hydrogen bonds are marked as dotted lines.

defined as one third of the trace of the orthogonalized \cup^{ij} tensor.					
	Х	у	Z	U(eq)	
O(1)	1764(1)	3327(2)	7295(1)	39(1)	
O(2)	750(1)	6017(2)	6796(1)	37(1)	
N(3)	1488(1)	4748(2)	6658(1)	25(1)	
C(4)	2018(2)	4809(2)	5799(1)	25(1)	
N(5)	1724(1)	6234(2)	4987(1)	26(1)	
O(6)	1012(1)	7621(2)	5009(1)	37(1)	
O(7)	2198(1)	6029(2)	4215(1)	41(1)	
C(8)	2828(2)	3217(2)	5674(1)	26(1)	
N(9)	2233(2)	1677(2)	5157(1)	39(1)	
O(10)	3328(1)	496(2)	5238(1)	47(1)	
N(11)	4626(2)	1310(2)	5834(2)	43(1)	
C(12)	4318(2)	2949(2)	6088(1)	31(1)	
N(13)	5431(1)	4261(3)	6728(1)	41(1)	
O(14)	6529(1)	3644(3)	7466(1)	60(1)	
O(15)	5162(2)	5888(2)	6475(2)	64(1)	
K(16)	536(1)	9763(1)	6754(1)	30(1)	

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for **3**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S3 Anisotropic Displacement Parameters (Å^{2×103}) for **3**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O(1)	54(1)	29(1)	36(1)	8(1)	20(1)	3(1)
O(2)	44(1)	28(1)	52(1)	-1(1)	32(1)	5(1)
N(3)	25(1)	22(1)	28(1)	-2(1)	11(1)	-2(1)
C(4)	24(1)	23(1)	28(1)	0(1)	10(1)	2(1)
N(5)	23(1)	27(1)	25(1)	0(1)	7(1)	-2(1)
O(6)	40(1)	29(1)	39(1)	8(1)	13(1)	10(1)

O(7)	49(1)	48(1)	33(1)	3(1)	24(1)	-1(1)
C(8)	25(1)	27(1)	27(1)	-1(1)	10(1)	1(1)
N(9)	32(1)	30(1)	52(1)	-9(1)	15(1)	3(1)
O(10)	41(1)	35(1)	67(1)	-15(1)	23(1)	7(1)
N(11)	35(1)	45(1)	52(1)	-5(1)	19(1)	10(1)
C(12)	26(1)	36(1)	32(1)	-2(1)	12(1)	4(1)
N(13)	26(1)	58(1)	40(1)	-9(1)	13(1)	-4(1)
O(14)	25(1)	99(1)	48(1)	4(1)	5(1)	-2(1)
O(15)	48(1)	48(1)	85(1)	-16(1)	14(1)	-11(1)
K(16)	34(1)	25(1)	30(1)	0(1)	13(1)	3(1)

Table S4. Bond lengths [Å] and angles [°] for 3.

O(1)-N(3)	1.2509(17)	C(8)-C(12)	1.418(2)	
O(2)-N(3)	1.2401(17)	N(9)-O(10)	1.3795(18)	
N(3)-C(4)	1.376(2)	O(10)-N(11)	1.369(2)	
C(4)-N(5)	1.381(2)	N(11)-C(12)	1.290(2)	
C(4)-C(8)	1.458(2)	C(12)-N(13)	1.448(2)	
N(5)-O(6)	1.2412(18)	N(13)-O(15)	1.212(3)	
N(5)-O(7)	1.2429(18)	N(13)-O(14)	1.214(2)	
C(8)-N(9)	1.300(2)			
O(2)-N(3)-O(1)	120.58(13)	C(12)-C(8)-C(4)	130.27(14)	
O(2)-N(3)-C(4)	122.43(12)	C(8)-N(9)-O(10)	106.21(13)	
O(1)-N(3)-C(4)	116.99(12)	N(11)-O(10)-N(9)	111.42(12)	
N(3)-C(4)-N(5)	123.23(13)	C(12)-N(11)-O(10)	103.89(13)	
N(3)-C(4)-C(8)	118.47(13)	N(11)-C(12)-C(8)	111.73(15)	
N(5)-C(4)-C(8)	118.07(13)	N(11)-C(12)-N(13)	120.66(15)	
O(6)-N(5)-O(7)	121.84(13)	C(8)-C(12)-N(13)	127.61(15)	
O(6)-N(5)-C(4)	122.47(13)	O(15)-N(13)-O(14)	126.35(18)	
O(7)-N(5)-C(4)	115.69(13)	O(15)-N(13)-C(12)	115.94(14)	
N(9)-C(8)-C(12)	106.73(14)	O(14)-N(13)-C(12)	117.71(18)	
N(9)-C(8)-C(4)	122.96(13)			

Table S5. Torsion angles [°] for 3.

O(2)-N(3)-C(4)-N(5)	-3.1(2)	N(3)-C(4)-C(8)-C(12)	-99.55(19)
O(1)-N(3)-C(4)-N(5)	175.82(13)	N(5)-C(4)-C(8)-C(12)	85.7(2)
O(2)-N(3)-C(4)-C(8)	-177.61(13)	C(12)-C(8)-N(9)-O(10)	-0.69(18)
O(1)-N(3)-C(4)-C(8)	1.35(19)	C(4)-C(8)-N(9)-O(10)	-178.37(14)
N(3)-C(4)-N(5)-O(6)	3.7(2)	C(8)-N(9)-O(10)-N(11)	1.1(2)
C(8)-C(4)-N(5)-O(6)	178.22(13)	N(9)-O(10)-N(11)-C(12)	-1.0(2)
N(3)-C(4)-N(5)-O(7)	-175.17(14)	O(10)-N(11)-C(12)-C(8)	0.53(19)
C(8)-C(4)-N(5)-O(7)	-0.68(19)	O(10)-N(11)-C(12)-N(13)	-179.75(15)
N(3)-C(4)-C(8)-N(9)	77.5(2)	N(9)-C(8)-C(12)-N(11)	0.1(2)
N(5)-C(4)-C(8)-N(9)	-97.22(19)	C(4)-C(8)-C(12)-N(11)	177.56(16)
N(9)-C(8)-C(12)-N(13)	-179.59(16)	C(8)-C(12)-N(13)-O(15)	-33.7(2)
C(4)-C(8)-C(12)-N(13)	-2.1(3)	N(11)-C(12)-N(13)-O(14)	-34.1(2)
N(11)-C(12)-N(13)-O(15)	146.63(18)	C(8)-C(12)-N(13)-O(14)	145.57(17)

Table S6. Bond lengths [Å] and angles [°] for 4.

1.358(4)	O1-N2	1.366(4)	
1.205(4)	O3-N3	1.213(4)	
1.216(4)	O5-N4	1.212(4)	
1.221(4)	O7-N5	1.221(4)	
	1.358(4) 1.205(4) 1.216(4) 1.221(4)	1.358(4)O1-N21.205(4)O3-N31.216(4)O5-N41.221(4)O7-N5	1.358(4)O1-N21.366(4)1.205(4)O3-N31.213(4)1.216(4)O5-N41.212(4)1.221(4)O7-N51.221(4)

N1-C11.281(5)N2-C21.308(5)N3-C11.461(4)N4-C31.540(5)N5-C31.496(5)C1-C21.426(5)C2-C31.490(5)C3-H31.0000N1-O1-N2112.0(3)C1-N1-O1104.8(3)C2-N2-O1105.7(3)N4-C3-H3107.8N5-C3-H3107.8C2-C3-H3107.8					
N3-C11.461(4)N4-C31.540(5)N5-C31.496(5)C1-C21.426(5)C2-C31.490(5)C3-H31.0000N1-O1-N2112.0(3)C1-N1-O1104.8(3)C2-N2-O1105.7(3)N4-C3-H3107.8N5-C3-H3107.8C2-C3-H3107.8	N1-C1	1.281(5)	N2-C2	1.308(5)	
N5-C31.496(5)C1-C21.426(5)C2-C31.490(5)C3-H31.0000N1-O1-N2112.0(3)C1-N1-O1104.8(3)C2-N2-O1105.7(3)N4-C3-H3107.8N5-C3-H3107.8C2-C3-H3107.8	N3-C1	1.461(4)	N4-C3	1.540(5)	
C2-C31.490(5)C3-H31.0000N1-O1-N2112.0(3)C1-N1-O1104.8(3)C2-N2-O1105.7(3)N4-C3-H3107.8N5-C3-H3107.8C2-C3-H3107.8	N5-C3	1.496(5)	C1-C2	1.426(5)	
N1-O1-N2112.0(3)C1-N1-O1104.8(3)C2-N2-O1105.7(3)N4-C3-H3107.8N5-C3-H3107.8C2-C3-H3107.8	C2-C3	1.490(5)	С3-Н3	1.0000	
C2-N2-O1105.7(3)N4-C3-H3107.8N5-C3-H3107.8C2-C3-H3107.8	N1-O1-N2	112.0(3)	C1-N1-O1	104.8(3)	
N5-C3-H3 107.8 C2-C3-H3 107.8	C2-N2-O1	105.7(3)	N4-C3-H3	107.8	
	N5-C3-H3	107.8	С2-С3-Н3	107.8	
N5-C3-N4 107.8(3) C2-C3-N4 113.7(3)	N5-C3-N4	107.8(3)	C2-C3-N4	113.7(3)	
C2-C3-N5 111.6(3) C1-C2-C3 134.1(3)	C2-C3-N5	111.6(3)	C1-C2-C3	134.1(3)	
N2-C2-C3 118.9(3) N2-C2-C1 106.8(3)	N2-C2-C3	118.9(3)	N2-C2-C1	106.8(3)	
C2-C1-N3 128.2(3) N1-C1-N3 121.1(3)	C2-C1-N3	128.2(3)	N1-C1-N3	121.1(3)	
N1-C1-C2 110.7(3) 07-N5-C3 116.9(3)	N1-C1-C2	110.7(3)	O7-N5-C3	116.9(3)	
O6-N5-C3 118.6(3) O6-N5-O7 124.5(3)	O6-N5-C3	118.6(3)	O6-N5-O7	124.5(3)	
O4-N4-C3 113.6(3) O5-N4-C3 117.6(3)	O4-N4-C3	113.6(3)	O5-N4-C3	117.6(3)	
O5-N4-O4 128.7(4) O3-N3-C1 115.4(3)	O5-N4-O4	128.7(4)	O3-N3-C1	115.4(3)	
<u>O2-N3-C1</u> 117.3(3) <u>O2-N3-O3</u> 127.2(3)	O2-N3-C1	117.3(3)	O2-N3-O3	127.2(3)	

 Table S7. Torsion angles [°] for 4.

N2-01-N1-C1	0.0(4)	N1-01-N2-C2	0 3(4)
01-N1-C1-C2	-0 3(4)	01-N1-C1-N3	1784(3)
02-N3-C1-N1	2.7(5)	$O_{3}-N_{3}-C_{1}-N_{1}$	-176.7(4)
$O_2 N_3 C_1 C_2$	178.8(4)	$O_3 N_3 C_1 C_2$	23(5)
02 - N3 - C1 - C2	-1/8.8(4)	01 N2 C2 C2	2.3(3) 175 7(2)
01-N2-C2-C1	-0.3(4)	01-N2-C2-C3	173.7(3)
NI-CI-C2-N2	0.5(4)	N3-C1-C2-N2	-1/8.1(3)
N1-C1-C2-C3	-174.8(4)	<u>N3-C1-C2-C3</u>	6.6(6)
N2-C2-C3-N5	-107.3(4)	C1-C2-C3-N5	67.5(5)
N2-C2-C3-N4	130.5(3)	C1-C2-C3-N4	-54.7(5)
O6-N5-C3-C2	-21.9(4)	O7-N5-C3-C2	156.2(3)
O6-N5-C3-N4	103.7(3)	O7-N5-C3-N4	-78.2(4)
O5-N4-C3-C2	145.6(3)	O4-N4-C3-C2	-37.1(4)
O5-N4-C3-N5	21.3(4)	O4-N4-C3-N5	-161.4(3)

Table S8. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2 x 10^3$) for **5**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	y	Z	U(eq)
O(1)	1635(4)	6280(3)	3776(2)	86(1)
O(2)	3336(5)	7453(3)	2915(2)	124(1)
N(3)	3141(5)	6607(3)	3425(2)	65(1)
C(4)	4893(4)	5879(2)	3625(2)	45(1)
N(5)	5997(4)	5486(3)	2993(2)	62(1)
O(6)	7387(3)	4746(2)	3393(1)	61(1)
N(7)	7106(3)	4720(2)	4290(1)	44(1)
C(8)	5564(3)	5414(2)	4444(2)	35(1)
C(9)	4892(3)	5595(2)	5337(1)	35(1)
N(10)	3847(3)	6574(2)	5586(1)	45(1)
O(11)	3245(3)	7503(2)	5222(1)	66(1)
O(12)	3419(3)	6429(2)	6509(1)	57(1)
N(13)	4250(3)	5335(2)	6784(1)	52(1)
C(14)	5127(3)	4858(2)	6099(1)	37(1)
C(15)	6116(4)	3649(2)	6180(2)	39(1)
N(16)	5126(4)	2674(2)	6421(2)	58(1)
O(17)	6487(4)	1724(2)	6438(2)	71(1)
N(18)	8332(4)	2122(2)	6200(2)	59(1)
C(19)	8100(4)	3293(2)	6041(2)	42(1)

N(20)	9785(3)	4044(2)	5800(2)	52(1)	
O(21)	11250(3)	3524(3)	5525(2)	84(1)	
O(22)	9581(3)	5154(2)	5894(1)	65(1)	

Table S9 Anisotropic Displacement Parameters (Å²×10³) for **5**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O(1)	67(2)	95(2)	97(2)	-10(2)	-10(2)	23(2)
O(2)	149(3)	105(2)	117(2)	56(2)	-39(2)	20(2)
N(3)	81(2)	58(2)	57(1)	4(1)	-26(2)	9(2)
C(4)	57(2)	37(1)	40(1)	3(1)	-6(1)	-1(1)
N(5)	81(2)	64(2)	40(1)	7(1)	4(1)	2(2)
O(6)	69(1)	71(1)	42(1)	-3(1)	12(1)	12(1)
N(7)	50(1)	44(1)	37(1)	-1(1)	5(1)	2(1)
C(8)	40(1)	27(1)	39(1)	-1(1)	0(1)	-2(1)
C(9)	35(1)	30(1)	41(1)	-3(1)	-1(1)	1(1)
N(10)	49(1)	37(1)	50(1)	-8(1)	-5(1)	8(1)
O(11)	80(2)	42(1)	76(2)	-4(1)	-14(1)	20(1)
O(12)	59(1)	59(1)	53(1)	-18(1)	9(1)	12(1)
N(13)	56(1)	56(2)	44(1)	-4(1)	6(1)	5(1)
C(14)	38(1)	40(1)	34(1)	-3(1)	2(1)	-2(1)
C(15)	45(1)	40(1)	31(1)	4(1)	-1(1)	-1(1)
N(16)	65(2)	46(1)	63(1)	16(1)	8(1)	-4(1)
O(17)	88(2)	43(1)	83(1)	24(1)	4(1)	2(1)
N(18)	66(2)	48(1)	63(2)	9(1)	-9(1)	12(1)
C(19)	47(1)	43(1)	36(1)	2(1)	-6(1)	3(1)
N(20)	43(1)	63(2)	49(1)	0(1)	-9(1)	0(1)
O(21)	41(1)	106(2)	105(2)	-10(2)	3(1)	11(1)
O(22)	63(1)	59(1)	71(1)	0(1)	-3(1)	-16(1)

 Table S10. Bond lengths [Å] and angles [°] for 5.

O(1)-N(3)	1.202(3)	O(2)-N(3)	1.204(4)
N(3)-C(4)	1.453(4)	C(4)-N(5)	1.288(4)
C(4)-C(8)	1.415(3)	N(5)-O(6)	1.374(3)
O(6)-N(7)	1.375(3)	N(7)-C(8)	1.304(3)
C(8)-C(9)	1.442(3)	C(9)-N(10)	1.326(3)
C(9)-C(14)	1.412(3)	N(10)-O(11)	1.215(3)
N(10)-O(12)	1.439(3)	O(12)-N(13)	1.372(3)
N(13)-C(14)	1.303(3)	C(14)-C(15)	1.471(3)
C(15)-N(16)	1.300(3)	C(15)-C(19)	1.411(4)
N(16)-O(17)	1.377(3)	O(17)-N(18)	1.366(3)
N(18)-C(19)	1.297(3)	C(19)-N(20)	1.444(3)
N(20)-O(21)	1.212(3)	N(20)-O(22)	1.215(3)
O(1)-N(3)-O(2)	126.9(3)	O(1)-N(3)-C(4)	115.9(3)
O(2)-N(3)-C(4)	117.1(3)	N(5)-C(4)-C(8)	110.6(2)
N(5)-C(4)-N(3)	119.6(2)	C(8)-C(4)-N(3)	129.5(2)
C(4)-N(5)-O(6)	104.9(2)	N(5)-O(6)-N(7)	110.86(19)
C(8)-N(7)-O(6)	106.01(19)	N(7)-C(8)-C(4)	107.6(2)
N(7)-C(8)-C(9)	119.8(2)	C(4)-C(8)-C(9)	132.6(2)
N(10)-C(9)-C(14)	106.0(2)	N(10)-C(9)-C(8)	122.9(2
C(14)-C(9)-C(8)	131.1(2)	O(11)-N(10)-C(9)	135.0(2)
O(11)-N(10)-O(12)	117.7(2)	C(9)-N(10)-O(12)	107.3(2)
N(13)-O(12)-N(10)	107.95(17)	C(14)-N(13)-O(12)	106.4(2)
N(13)-C(14)-C(9)	112.3(2)	N(13)-C(14)-C(15)	119.3(2)

C(9)-C(14)-C(15)	128.3(2)	N(16)-C(15)-C(19)	108.0(2)	
N(16)-C(15)-C(14)	120.6(2)	C(19)-C(15)-C(14)	131.3(2)	
C(15)-N(16)-O(17)	105.4(2)	N(18)-O(17)-N(16)	111.72(19)	
C(19)-N(18)-O(17)	104.2(2)	N(18)-C(19)-C(15)	110.6(2)	
N(18)-C(19)-N(20)	120.0(3)	C(15)-C(19)-N(20)	129.3(2)	
O(21)-N(20)-O(22)	126.1(3)	O(21)-N(20)-C(19)	118.1(3)	
O(22)-N(20)-C(19)	115.8(2)			

Table S11. Torsion angles [°] for 5.

<u> </u>				
O(1)-N(3)-C(4)-N(5)	130.5(3)	O(2)-N(3)-C(4)-N(5)	-48.1(4)	
O(1)-N(3)-C(4)-C(8)	-43.6(4)	O(2)-N(3)-C(4)-C(8)	137.8(3)	
C(8)-C(4)-N(5)-O(6)	0.7(3)	N(3)-C(4)-N(5)-O(6)	-174.5(2)	
C(4)-N(5)-O(6)-N(7)	-0.9(3)	N(5)-O(6)-N(7)-C(8)	0.8(3)	
O(6)-N(7)-C(8)-C(4)	-0.3(3)	O(6)-N(7)-C(8)-C(9)	-179.0(2)	
N(5)-C(4)-C(8)-N(7)	-0.2(3)	N(3)-C(4)-C(8)-N(7)	174.3(3)	
N(5)-C(4)-C(8)-C(9)	178.3(3)	N(3)-C(4)-C(8)-C(9)	-7.2(5)	
N(7)-C(8)-C(9)-N(10)	155.7(2)	C(4)-C(8)-C(9)-N(10)	-22.6(4)	
N(7)-C(8)-C(9)-C(14)	-24.8(4)	C(4)-C(8)-C(9)-C(14)	156.9(3)	
C(14)-C(9)-N(10)-O(11)	178.5(3)	C(8)-C(9)-N(10)-O(11)	-1.9(4)	
C(14)-C(9)-N(10)-O(12)	-0.6(3)	C(8)-C(9)-N(10)-O(12)	179.0(2)	
O(11)-N(10)-O(12)-N(13)	-179.2(2)	C(9)-N(10)-O(12)-N(13)	0.0(3)	
N(10)-O(12)-N(13)-C(14)	0.6(3)	O(12)-N(13)-C(14)-C(9)	-1.1(3)	
O(12)-N(13)-C(14)-C(15)	-178.2(2)	N(10)-C(9)-C(14)-N(13)	1.1(3)	
C(8)-C(9)-C(14)-N(13)	-178.5(2)	N(10)-C(9)-C(14)-C(15)	177.9(2)	
C(8)-C(9)-C(14)-C(15)	-1.7(4)	N(13)-C(14)-C(15)-N(16)	59.0(3)	
C(9)-C(14)-C(15)-N(16)	-117.6(3)	N(13)-C(14)-C(15)-C(19)	-120.9(3)	
C(9)-C(14)-C(15)-C(19)	62.5(4)	C(19)-C(15)-N(16)-O(17)	0.6(3)	
C(14)-C(15)-N(16)-O(17)	-179.4(2)	C(15)-N(16)-O(17)-N(18)	-0.4(3)	
N(16)-O(17)-N(18)-C(19)	0.0(3)	O(17)-N(18)-C(19)-C(15)	0.3(3)	
O(17)-N(18)-C(19)-N(20)	177.5(2)	N(16)-C(15)-C(19)-N(18)	-0.6(3)	
C(14)-C(15)-C(19)-N(18)	179.3(2)	N(16)-C(15)-C(19)-N(20)	-177.4(2)	
C(14)-C(15)-C(19)-N(20)	2.5(4)	N(18)-C(19)-N(20)-O(21)	19.5(4)	
C(15)-C(19)-N(20)-O(21)	-163.9(3)	N(18)-C(19)-N(20)-O(22)	-160.8(2)	
C(15)-C(19)-N(20)-O(22)	15.8(4)			

Table S12. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2 x 10^3$) for **8**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
O(1)	4780(1)	5895(2)	1112(1)	76(1)
O(2)	5359(1)	7890(2)	806(1)	56(1)
N(3)	5370(1)	6481(2)	1344(1)	43(1)
C(4)	6020(1)	5519(2)	2220(1)	36(1)
N(5)	6718(1)	6131(2)	2625(1)	38(1)
O(6)	6829(1)	7605(2)	2250(1)	59(1)
O(7)	7257(1)	5089(2)	3416(1)	46(1)
C(8)	5991(1)	3720(2)	2742(1)	41(1)
N(9)	5655(1)	1996(2)	2211(1)	67(1)
O(10)	5785(1)	633(2)	2990(1)	79(1)
N(11)	6207(1)	1537(3)	4009(2)	64(1)
C(12)	6327(1)	3392(3)	3852(1)	44(1)
N(13)	6761(1)	4856(3)	4765(1)	65(1)
O(14)	6697(1)	6664(2)	4533(1)	63(1)
O(15A)	7312(3)	4346(11)	5712(5)	87(2)
O(15B)	6931(4)	3958(11)	5610(5)	107(2)

N(16)	6242(1)	834(2)	710(1)	36(1)	
O(17)	6601(1)	2417(2)	1493(1)	68(1	

Atom	U11	U22	Uaa	U23	U13	U12
O(1)	31(1)	90(1)	87(1)	34(1)	31(1)	6(1)
O(2)	42(1)	56(1)	53(1)	22(1)	23(1)	6(1)
N(3)	33(1)	44(1)	44(1)	8(1)	22(1)	4(1)
C(4)	30(1)	37(1)	38(1)	7(1)	21(1)	3(1)
N(5)	32(1)	39(1)	39(1)	5(1)	23(1)	3(1)
O(6)	41(1)	63(1)	65(1)	26(1)	30(1)	-2(1)
O(7)	30(1)	51(1)	46(1)	12(1)	20(1)	8(1)
C(8)	35(1)	40(1)	47(1)	6(1)	26(1)	3(1)
N(9)	74(1)	47(1)	64(1)	6(1)	38(1)	-12(1)
O(10)	85(1)	53(1)	86(1)	16(1)	50(1)	-12(1)
N(11)	72(1)	60(1)	77(1)	27(1)	56(1)	17(1)
C(12)	48(1)	43(1)	51(1)	15(1)	37(1)	17(1)
N(13)	75(1)	69(1)	46(1)	11(1)	38(1)	34(1)
O(14)	72(1)	61(1)	66(1)	-6(1)	49(1)	0(1)
O(15A)	90(3)	89(3)	40(2)	13(2)	24(2)	30(3)
O(15B)	157(6)	90(3)	53(3)	14(2)	59(4)	29(4)
N(16)	35(1)	38(1)	36(1)	6(1)	23(1)	5(1)
O(17)	47(1)	71(1)	81(1)	-31(1)	39(1)	-7(1)

Table S13 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for **8**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table S14. Bond lengths [Å] and angles [°] for 8.

O(1)-N(3)	1.2388(17)	O(2)-N(3)	1.2386(17)
N(3)-C(4)	1.3741(18)	C(4)-N(5)	1.3725(18)
C(4)-C(8)	1.455(2)	N(5)-O(6)	1.2379(17)
N(5)-O(7)	1.2503(15)	C(8)-N(9)	1.304(2)
C(8)-C(12)	1.408(2)	N(9)-O(10)	1.385(2)
O(10)-N(11)	1.364(2)	N(11)-C(12)	1.289(2)
C(12)-N(13)	1.453(2)	N(13)-O(14)	1.200(2)
N(13)-O(15A)	1.232(6)	N(13)-O(15B)	1.269(6)
N(16)-O(17)	1.3910(18)	N(16)-H(16A)	0.8900
N(16)-H(16B)	0.8900	N(16)-H(16C)	0.8900
O(17)-H(17)	0.96(3)		
O(2)-N(3)-O(1)	120.26(13)	O(2)-N(3)-C(4)	122.74(13)
O(1)-N(3)-C(4)	117.00(13)	N(5)-C(4)-N(3)	123.07(13)
N(5)-C(4)-C(8)	116.66(12)	N(3)-C(4)-C(8)	120.24(13)
O(6)-N(5)-O(7)	120.27(12)	O(6)-N(5)-C(4)	123.96(12)
O(7)-N(5)-C(4)	115.77(12)	N(9)-C(8)-C(12)	107.18(15)
N(9)-C(8)-C(4)	122.67(15)	C(12)-C(8)-C(4)	130.03(15)
C(8)-N(9)-O(10)	105.66(15)	N(11)-O(10)-N(9)	111.30(14)
C(12)-N(11)-O(10)	104.17(15)	N(11)-C(12)-C(8)	111.69(17)
N(11)-C(12)-N(13)	120.36(16)	C(8)-C(12)-N(13)	127.95(15)
O(14)-N(13)-O(15A)	117.2(4)	O(14)-N(13)-O(15B)	131.1(4)
O(14)-N(13)-C(12)	117.06(15)	O(15A)-N(13)-C(12)	123.1(4)
O(15B)-N(13)-C(12)	107.4(4)	O(17)-N(16)-H(16A)	109.5
O(17)-N(16)-H(16B)	109.5	H(16A)-N(16)-H(16B)	109.5
O(17)-N(16)-H(16C)	109.5	H(16A)-N(16)-H(16C)	109.5
H(16B)-N(16)-H(16C)	109.5	N(16)-O(17)-H(17)	104.4(15)

Table S15.	Torsion	angles	[°]	for 8 .

0.		
4.8(3)	C(12)-C(8)-N(9)-O(10)	0.1(2)
-174.40(16)	C(4)-C(8)-N(9)-O(10)	176.60(15)
-173.03(15)	C(8)-N(9)-O(10)-N(11)	-0.2(2)
7.8(2)	N(9)-O(10)-N(11)-C(12)	0.3(2)
0.7(2)	O(10)-N(11)-C(12)-C(8)	-0.18(19)
178.56(15)	O(10)-N(11)-C(12)-N(13)	179.46(15)
-179.08(14)	N(9)-C(8)-C(12)-N(11)	0.0(2)
-1.2(2)	C(4)-C(8)-C(12)-N(11)	-176.10(16)
-116.76(18)	N(9)-C(8)-C(12)-N(13)	-179.56(16)
61.2(2)	C(4)-C(8)-C(12)-N(13)	4.3(3)
58.9(2)	N(11)-C(12)-N(13)-O(14)	-161.46(17)
-123.19(18)	C(8)-C(12)-N(13)-O(14)	18.1(3)
37.7(4)	N(11)-C(12)-N(13)-O(15B)	-2.4(4)
-142.7(4)	C(8)-C(12)-N(13)-O(15B)	177.2(4)
	$\begin{array}{c} 4.8(3) \\ -174.40(16) \\ -173.03(15) \\ 7.8(2) \\ 0.7(2) \\ 178.56(15) \\ -179.08(14) \\ -1.2(2) \\ -116.76(18) \\ 61.2(2) \\ 58.9(2) \\ -123.19(18) \\ 37.7(4) \\ -142.7(4) \end{array}$	4.8(3) $C(12)-C(8)-N(9)-O(10)$ $-174.40(16)$ $C(4)-C(8)-N(9)-O(10)$ $-173.03(15)$ $C(8)-N(9)-O(10)-N(11)$ $7.8(2)$ $N(9)-O(10)-N(11)-C(12)$ $0.7(2)$ $O(10)-N(11)-C(12)-C(8)$ $178.56(15)$ $O(10)-N(11)-C(12)-N(13)$ $-179.08(14)$ $N(9)-C(8)-C(12)-N(11)$ $-12(2)$ $C(4)-C(8)-C(12)-N(13)$ $61.2(2)$ $C(4)-C(8)-C(12)-N(13)$ $58.9(2)$ $N(11)-C(12)-N(13)-O(14)$ $-123.19(18)$ $C(8)-C(12)-N(13)-O(14)$ $37.7(4)$ $N(11)-C(12)-N(13)-O(15B)$ $-142.7(4)$ $C(8)-C(12)-N(13)-O(15B)$

Table S16. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x 103) for 8.

	X	у	Z	U(eq)	
H(16A)	6511	501	519	54	
H(16B)	5790	1264	115	54	
H(16C)	6196	-274	994	54	
H(17)	7123(16)	2240(40)	1860(20)	103	

Table S17. Hydrogen bonds for 8 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(16)-H(16A)O(7)#1	0.89	2.22	2.8697(16)	129.2	
N(16)-H(16B)O(2)#4	0.89	2.14	2.9715(17)	155.2	
N(16)-H(16B)O(1)#4	0.89	2.36	3.0895(18)	139.8	
N(16)-H(16C)O(2)#5	0.89	2.15	2.8920(18)	141.1	
N(16)-H(16C)O(6)#5	0.89	2.05	2.8007(16)	141.3	
O(17)-H(17)O(7)#1	0.96(3)	2.26(3)	2.9987(18)	133(2)	
O(17)-H(17)O(6)#1	0.96(3)	1.89(3)	2.8318(18)	165(2)	
O(17)-H(17)N(5)#1	0.96(3)	2.39(3)	3.3257(18)	164(2)	

Symmetry transformations used to generate equivalent atoms:

#1 -x+3/2,y-1/2,-z+1/2 #2 x,-y+1,z-1/2 #3 x,-y,z-1/2

#4 -x+1,-y+1,-z #5 x,y-1,z

Theoretical calculations

The heats of formation for **4**, **5** and anion of **3**, **7-9** were determined using isodesmic reactions (Scheme S1). The calculations were carried out using Gaussian 03 (Revision D.01) suite of programs.⁶ The geometric optimization and frequency analyses of the structures were calculated using B3LYP/6-31+ G^{**} level,⁷ and single energy points were calculated at the MP2/6-311++ G^{**} level.⁸ The heats of formation for the cations were obtained by an atomization approach using G2 ab initio method.⁹ The heats of formation of other compounds in Scheme S1 were obtained from the NIST WebBook.¹⁰

Scheme S1. Isodesmic reactions.

Table S18 The heats of formation (HOF) for 4, 5 and anion of 3, 7-9.^a

Compounds	ZPE [Hartree/Particle]	Hcorr [Hartree/Particle]	Mp-6-311++g** [Hartree/Particle]	HoF(gas) [kJ mol ⁻¹]
4	0.080872	0.094275	-912.9127531	134.9521803
5	0.10615	0.123935	-1265.157924	602.3225537
Anion of 3 , 7-9	0.067759	0.080944	-912.4077036	-58.47370814

^{*a*} The enthalpy of sublimation was calculated by using Trouton's rule. Solid-state heats of formation of the resulting compounds were calculated with Equation (1) in which Tm is the melting temperature. $\Delta H_f = \Delta H_f(g) - \Delta H_{sub} = \Delta Hf(g) - 188[J \text{ mol}^{-1} \text{ K}^{-1}] \times T_m$ (1).

5	24016		50600		
ā.	1		-		
				Current	Oata Parameters
				NAME	giongane 1H
				PROCNO	567
				F2 - 4ct	utsition Parameters
0				Date_	20190125
				Tane	10 00
N N				INSTRUM	spect
I'll wo				210 0000	3 88 987 10/13
DN KOUL				ID	32766
-2 1 01				SOLVENT	00013
NO2				NS	8
-				05	0
				5401	5112 475 H/
				FIDRES	0 156020 Hz
				40	3 2047603 sec
				70	2560 3
			1	DH	57 800 USEC
				LF IF	300 0 K
				01	1.00000000 sec
	1				CHANNEL (1
				MUC1	1H
				P 1	3 00 usec
				PL1	Bb 00 1-
				5-01	300 1313200 AH2
				F2 - Pro	cessing parameters
				51	32768
				55	300 1300127 HHz
				YOW	EN
				556	0.30 Hz
				58	0 10 10
				PC	1 00
				10 NHR (lot parameters
			1	CX	50 00 cm
				CY	6 96 cm
				=1P	15 009 pps
				-1 F30	-2 626 non
				+2	-607 68 Hz
				PPNCH	0 85171 pps/cs
				HZCH	255 62372 Hz/cm
	<u> </u>		4 1 1, m 1		
ppm 14 12 10 8	6	4 2	0		

Figure S13. ¹H NMR spectrum of 2

Figure S14. ¹³C NMR spectrum of 2

Figure S15. ¹H NMR spectrum of 3

Figure S16. ¹³C NMR spectrum of 3

Figure S17. ¹H NMR spectrum of 4

Figure S18. ¹³C NMR spectrum of 4

Figure S19. ¹H NMR spectrum of 5

Figure S20. ¹³C NMR spectrum of 5

Figure S21. ¹H NMR spectrum of 6

Figure S22. ¹³C NMR spectrum of 6

Figure S23. ¹H NMR spectrum of 7

Figure S24. ¹³C NMR spectrum of 7

Figure S25. ¹H NMR spectrum of 8

Figure S26. ¹³C NMR spectrum of 8

Figure S27. ¹H NMR spectrum of 9

Figure S28. ¹³C NMR spectrum of 9

References

- (1) Bruker. APEX2 v2010.3-0. Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
- (2) Bruker. SAINT v7.68A. Bruker AXS Inc., Madison, Wisconsin, USA, 2009.
- (3) Bruker. XPREP v2008/2. Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
- (4) Bruker. SADABS v2008/1, Bruker AXS Inc., Madison, Wisconsin, USA, 2008.

(5) (a) G. M. Sheldrick, SHELXL-2014/7. University of Gottingen, Germany, 2014; (b) L. Farrugia, J. *Appl. Cryst.*, 2012, **45**, 849-854.

(6) Gaussian 03 (Revision E.01), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.

Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,
K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels,
M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui,
A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi,
R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M.
W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc. Wallingford CT,
2004.

(7) R. G. Parr and W. Yang, *Density Functional Theory of Atoms and Molecules*, Oxford University Press, New York, 1989.

(8) M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett., 1988, 153, 503-506.

(9) J. M. Martin, Chem. Phys. Lett., 1996, 259, 669-678.

(10) P. J. Linstrom and W. G. Mallard, Eds. NIST Chemistry WebBook, NIST Standard Reference

Database, 69, National Institute of Standards and Technology, 2005.