Electronic Supplementary Information

Hollow PtCu Nanoparticles Encapsulated into Carbon Shell *via* Mild Annealing of Cu Metal-Organic Frameworks

Guanjun Chen,^a Huaqiang Shan,^a Yan Li,^a Hongwei Bao,^a Tingwei Hu,^b Long Zhang,^c Shuai Liu,^d and Fei Ma, ^{a,*}

- ^a State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an
 710049, Shaanxi, People's Republic of China
- ^b Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou 571199, Hainan, People's Republic of China
- ^c School of Materials Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, People's Republic of China
- ^d College of Sciences, Xi'an Shiyou University, Xi'an 710065, Shaanxi, People's Republic of China
- * Corresponding author: mafei@mail.xjtu.edu.cn (F. M.)

Fig. S1 Guanjun Chen et al.

Fig. S1 TGA plots for Cu-BTC, the insets a-g correspond to the SEM images of A-G in TGA, respectively.

Fig. S2 Guanjun Chen et al.

Fig. S2 (a) XRD patterns of Cu-BTC and the simulated XRD pattern of Cu-BTC by Materials Studio 7.0, the insets show the crystal structure of Cu-BTC (blue, gray, red and pink spheres represent Cu, C, O and H atoms, respectively). (b) XRD patterns of Cu@C and Cu₂O@C.

Fig. S3 Guanjun Chen et al.

Fig. S3 (a-b) TEM images of S-H-Pt_xCu_y@C. (a₁) Enlarged TEM image of selected area labelled in (a). (c) The diameter distribution histograms of spherical hollow PtCu alloy statistics from (b).

Fig. S4 Guanjun Chen et al.

Fig. S4 (a) XRD pattern of S-H-Pt_xCu_y@C. (b) Cu 2p XPS spectra of S-H-Pt_xCu_y@C and Cu@C. (c) Pt 4f XPS spectra of S-H-Pt_xCu_y@C and Pt/XC-72 Carbon. (d-i) C 1s XPS spectra of Cu-BTC, Cu@C, Cu₂O@C, S-H-PtCu₃@C, S-H-PtCu@C and S-H-Pt₃Cu@C.

Fig. S5 Guanjun Chen et al.

Fig. S5 Full range XPS spectrum of Cu-BTC, Cu@C, Cu₂O@C and S-H-Pt_xCu_y@C.

Fig. S6 Guanjun Chen et al

Fig. S6 CV curves of S-H-Pt_xCu_y@C and commercial Pt/C catalysts in 0.5 M H₂SO₄.

Fig. S7 Guanjun Chen et al.

Fig. S7 (a) The electrochemically active surface area of S-H-Pt_xCu_y@C and commercial Pt/C catalysts. (b) Mass activity and Specific activity of S-H-Pt_xCu_y@C and commercial Pt/C catalysts

Fig. S8 Nitrogen adsorption and desorption isotherms of S-H-PtCu@C and commercial Pt/C.

Fig. S9 (a-d) CV curves of commercial Pt/C, S-H-Pt₃Cu@C, S-H-PtCu@C and S-H-PtCu₃@C catalysts before and after 1000 potential cycles.

Fig. S10 Long-term durability measurements of S-H-PtCu@C catalyst, the arrows indicate when electrocatalysts were reactivated in clean 0.5 M H_2SO4 .

Fig. S11 Guanjun Chen et al.

Fig. S11 (a) TEM characterization of S-H-PtCu@C after removing the carbon shell. (b)Chronoamperometricmeasurementresult.

Fig. S12 (a) CV curves of S-H-PtCu@C, commercial Pt-Ru Black and commercial PtRu catalysts in 0.5 M H₂SO₄. (b) CV curves of S-H-PtCu@C, commercial Pt-Ru Black and commercial PtRu catalysts in 0.5 M H₂SO₄ + 1 M methanol. (c) CV curves of commercial Pt-Ru Black before and after 1000 potential cycles. (d) Chronoamperometric measurements.

Fig. S13 Guanjun Chen et al.

Fig. S13 (a) Polarization curves and (b) power density of S-H-PtCu@C, commercial Pt-Ru Black and commercial 20% Pt/C in DMFCs.

Fig. S14 (a-d) Structural models of Pt (111), Pt_3Cu (111), PtCu (111) and $PtCu_3$ (111) slabs.

Specimen	Pt (wt %)	Cu (wt %)	Pt : Cu (at %)
S-H-Pt ₃ Cu@C	76	9	73.4 : 26.6 ≈ 3 : 1
S-H-PtCu@C	57	20	48.2 : 51.8 ≈ 1 : 1
S-H-PtCu ₃ @C	36	37	24.1 : 75.9 ≈ 1 : 3

Table S1 The atomic fraction of Pt and Cu in the sample.

Electrocatalyst	Electrolyte	Mass activity (mA mg ⁻¹)	Specific activity (mA cm ⁻²)	Scan rate (mV s ⁻¹)	Durability	Reference
S-H-PtCu@C	0.5 M H ₂ SO ₄ + 1.0 M methanol	755.27	1.42	50	89 % activity retention after 5000s	This work
AL-Pt/Pt ₃ Ga	0.5 M H ₂ SO ₄ + 1.0 M methanol		7.195	50	25 % activity retention after 1000s	J. Am. Chem. Soc. 2018 , 140, 2773
Pt ₆₉ Ni ₁₆ Rh ₁₅ NWs	0.1 M HClO4 + 0.5 M methanol		2.49	50	30 % activity retention after 5000s	Adv. Mater. 2019 , 31, 1805833
Pt-8-92	0.5 M H ₂ SO ₄ + 0.5 M methanol	405	1.29	100	30 % activity retention after 3000s	Angew. Chem. Int. Ed. 2016 , 55, 1
octahedral Pt-Ag NCs	0.1 M HClO ₄ + 0.5 M methanol	608.3	3.66	50	45 % activity retention after 2000s	Nano Energy 2019 , 61, 397
PtBi nanoplates /C	0.1 M HClO ₄ + 0.1 M methanol	1100	3.18	50	12 % activity retention after 4000s	ACS Catal. 2018, 8, 5581
Pt ₃ CoRu/C@NC	0.1 M HClO ₄ + 0.5 M methanol	970	1.6	50	40 % activity retention after 6000s	J. Mater. Chem. A 2019 , 7, 18143
Pt/e-RGO- SWCNT	0.5 M H ₂ SO ₄ + 1.0 M methanol	190	1.45	50	15 % activity retention after 4000s	Appl. Catal. B- Environ. 2019, 257, 3117886
Pt-Fe ₂ P	0.5 M H ₂ SO ₄ + 1.0 M methanol	1039	1.29	20	28 % activity retention after 3500s	ACS Appl. Mater. Interfaces 2019 , 11, 9496
PtNiPb NPs	0.1 M HClO ₄ + 0.5 M methanol		2.4	50	30 % activity retention after 5000s	Nanoscale 2019, 11, 16945

Table S2 A summary of the activity and stability of Pt-based electrocatalysts during MOR available in literature.

Electrocatalyst	Electrolyte	Mass activity (mA mg ⁻¹)	Specific activity (mA cm ⁻²)	Scan rate (mV s ⁻¹)	Durability	Reference
S-H-PtCu@C	0.5 M H ₂ SO ₄ + 1.0 M methanol	755.27	1.42	50	89 % activity retention after 10000s; 86 % activity retention after 20000s	This work
PtCu ₃ cubic nanocages	0.1 M HClO ₄ + 1.0 M methanol		14.1	20	20 % activity retention after 1000s	J. Am. Chem. Soc. 2012 , 134, 13934
Au@PtCu/C	0.1 M HClO ₄ + 0.5 M methanol	927	1.41	50	30 % activity retention after 800s	Appl. Catal. B- Environ. 2015, 174-175, 361
Pt ₅₀ Cu ₅₀ /G	1.0 M H ₂ SO ₄ + 2.0 M methanol		55.2	50	50 % activity retention after 2000s	J. Mater. Chem. A 2015, 3, 15882
Pt ₄₅ Cu ₃₅ Co ₂₀	$0.1 \text{ M H}_2\text{SO}_4 + 0.5 \text{ M methanol}$		18.24	50	20 % activity retention after 3600s	ACS Appl. Mater. Interfaces 2019 , 11, 32282
PtCu nanostars	0.5 M H ₂ SO ₄ + 1.0 M methanol	574	3.45	50	20 % activity retention after 2000s	Nano Res. 2019, 12, 1147
Pt _{34.5} Cu _{65.5} octahedra	$0.1 \text{ M H}_2\text{SO}_4 + 0.5 \text{ M methanol}$	420	4.12	50	25 % activity retention after 3000s	Nanoscale 2018 , 10, 4670
Cu@PtCu(Gly)	0.5 M H ₂ SO ₄ + 1.0 M methanol	1568	3.56	100	15 % activity retention after 5000s	Chem. Commun. 2017, 53, 7457
Pt ₈₄ Cu ₁₆	0.5 M H ₂ SO ₄ + 0.5 M methanol	314	1.39	50	12 % activity retention after 4000s	Chem. Eur. J. 2019, 25, 343

Table S3 A summary of the activity and stability of PtCu-alloy electrocatalysts during MOR available in literature.

Table S4 The DFT calculated formation energies (ΔH_{alloy}) of fcc Pt, PtCu₃, PtCu and Pt₃Cu, d band center (ε_d) and Bader charge of surface Pt atoms for Pt, PtCu₃, PtCu and Pt₃Cu alloy slabs.

	$\Delta H_{alloy} ({ m eV})$	Bader charge (e) ^a	$\varepsilon_{d}(\mathrm{eV})^{\mathrm{a}}$	$\Delta \varepsilon_d (\mathrm{eV})$
Pt			-1.70	
Pt ₃ Cu	-2.36	0.19	-1.96	-0.26
PtCu	-1.87	0.37	-2.17	-0.47
PtCu ₃	-1.53	0.60	-1.80	-0.10

^a The selected Pt atom will host CO after CO adsorption

 $\Delta \varepsilon_d$ (eV) represents difference of the d-band center