Supporting Information

Colossal Thermoelectric Enhancement in $Cu_{2+x}Zn_{1-x}SnS_4$ solid solution by local disordering of crystal lattice and multi-scale defect engineering

Qinghui Jiang*, Haixue Yan, Yuanhua Lin, Yang Shen, Junyou Yang*, and Michael J. Reece*

Q. H. Jiang, and J.Y. Yang

State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

e-mail: qhjiang@hust.edu.cn and jyyang@hust.edu.cn

H. X. Yan, and M. J. Reece

School of Engineering and Materials Science, Queen Mary University of London, Mile end road, London, E1 4NS, UK

e-mail: m.j.reece@qmul.ac.uk

Y. H. Lin, and Y. Shen

State Key Laboratory of New Ceramics and Fine Progressing, Tsinghua University, Beijing 100084, PR China

Keywords: Thermoelectrics, dynamic plastic deformation, spark plasma sintering, sulfide

elements	\$/ton	Element Content in the earth (ppm)
Cu	6000	100
S	200	500
Zn	1500	200
Sn	16000	3
Pb	2000	15
Sb	10000	0.5
Ti	20000	6300
Te	100000	1
Bi	20000	20
Se	100000	0.05
Ag	300000	0.07
Mg	4000	20000
Ni	50000	180

Table S1. The price of elements and their content in the earth's crust (from www.1688.com).

Figure S1. Schematic diagram of hot forging process.

Figure S2. XRD patterns of Cu_2ZnSnS_4 powders ball milled at 350 rpm for different times. (The data were collected using Siemens D5000 (Karlsruhe, Germany) in Queen Mary University of London.)

Figure S3. XRD patterns of $Cu_{2+x}Zn_{1-x}SnS_4$ powders ball milled at 350 rpm for 40 hours (The data were collected using Rigaku D/max-rB (Akishima, Tokyo, Japan) in Tsinghua University.)

Figure S4 XRD data including profile fit, profile difference, and profile residuals of the corresponding Rietveld fit of $Cu_{2.125}Zn_{0.875}SnS_4$ bulk after hot forging

Figure S5. The SPS outputs for Cu_{2.125}Zn_{0.875}SnS₄ sintered at 600 °C for 8 mins under 60 MPa (first step).

Figure S6. The SPS outputs of $Cu_{2.125}Zn_{0.875}SnS_4$ prepared by hot forging at 550 °C under 50 MPa (second step). The sample broke at 0.5 min.