Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting information

Enhancing the operational stability of unencapsulated perovskite solar cells through Cu-Ag bilayer electrode incorporation

Chieh-Ting Lin^{1,3}, Jonathan Ngiam^{1,3}, Bob Xu^{1,3}, Yu-Han Chang^{2,3}, Tian Du^{1,3}, Thomas J. Macdonald^{2,3}, James R. Durrant²⁻⁴ and Martyn A. McLachlan^{*1,3}

¹Department of Materials and Centre for Plastic Electronics, Imperial College, London, SW7 2AZ, United Kingdom ²Department of Chemistry and Centre for Plastic Electronics, Imperial College, London, SW7 2AZ, United Kingdom ³ Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, United Kingdom ⁴ SPECIFIC IKC, College of Engineering, Swansea University, SA2 7AX, United Kingdom

	Electrode	Voc(V)	Jsc(mA/cm²)	FF	PCE(%)
MAPbI ₃	Al	1.07 ±0.01 (1.07)	22.2 ±0.4 (22.5)	0.76 ±0.02 (0.77)	18.1 ±0.5 (18.5)
	Ag	1.08 ±0.01 (1.09)	21.9 ±0.3 (22.3)	0.77 ±0.02 (0.79)	18.2 ±0.5 (18.8)
	Cu	1.08 ±0.01 (1.08)	21.0 ±0.7 (21.6)	0.80 ±0.01 (0.81)	18.3 ±0.7 (18.9)
	Cu/Ag	1.08 ±0.01 (1.08)	20.8 ±0.7 (21.5)	0.8 1±0.01 (0.81)	18.2 ±0.6 (18.8)

Table S1. Statistical J-V device data corresponding to data shown in Figure 1c.

Figure S1 Forward and reverse scan of J-V characteristic of PSCs employing (a) Al, (b) Ag, (c) Cu, and (d) Cu-Ag as counter electrodes

Figure S2 J-V scans of PSCs employing (a) AI, (b) Ag, (c) Cu, and (d) Cu-Ag as counter electrodes over the time periods indicated.

Figure S3 (a) Photographs showing as-prepared and aged (20 hours) devices employing Al electrodes. (b) XRD pattern showing the (110) diffraction peak of the MAPI device prepared with a Al electrode before and after 20 hours of lifetime testing.

Figure S4 The shelf stability of PSC with Cu-Ag electrode. The devices were stored in dark in ambient air, with RH~40-50%.

Table S2 Secondary ion, m/z and identification of species used in ToF-SIMS depth profile analysis.

Secondary ion	Mass (m/z)	Device layer/material		
Cu⁻	62.9380	Copper electrode		
Ag⁻	106.9069	Silver electrode		
C ₃ -	36.0015	PCBM (HTL)		
ŀ	106.9153	Perovskite layer		
Pbl₃⁻	588.7286	Perovskite layer		
InO ⁻	130.91	ITO substrate		
Cul ₂	316.7667	Metal-halide		
Agl ₂ -	360.7247	Metal-halide		

Figure S5 ToF-SIMS depth profiles of devices with Cu electrodes, fresh and aged (degraded)

Figure S6 ToF-SIMS depth profiles of devices with Ag electrodes, fresh and aged (degraded)

Figure S7 ToF-SIMS depth profiles of devices with Cu-Ag electrodes, fresh and aged (degraded)

Figure S8 Magnified XRD pattern of PSC employing Cu10nm/Ag100nm electrode. The anticipated diffraction peak of CuO at $39.2^{\circ} 2\theta$ is not observed.

Figure S9 . Full XRD patterns of fresh and aged MAPbI₃ devices with (a)AI (b)Ag (c)Cu (d) Cu-Ag electrodes.

Peak	Peak	Integrate	FWHM	Max	Centre	Integrated				
	type	d area		height	Gravity	area %				
Fresh device (110/002)										
002	Gauss	0.0286	0.160	0.168	14.03	23.65				
110	Gauss	0.0923	0.102	0.844	14.15	76.34				
Aged device (110/002)										
002	Gauss	0.0533	0.166	0.659	14.03	44.83				
110	Gauss	0.0656	0.093	0.301	14.15	55.17				
Fresh device (220/004)										
004	Gauss	0.0067	0.183	0.034	28.19	5.47				
220	Gauss	0.1210	0.150	0.760	28.47	94.53				
Aged device (220/004)										
004	Gauss	0.0233	0.150	0.146	28.19	20.6				
220	Gauss	0.0894	0.124	0.679	28.47	79.3				

Table S3. Parameters of XRD fitting for data shown in Figures 4d-g.