Electronic Supplementary Information

Identification of active sites for CO₂ hydrogenation in Fe catalysts

by first-principles microkinetic modelling

Seung Ju Han^a, Sun-Mi Hwang^a, Hae-Gu Park^a, Chundong Zhang^b, Ki-Won Jun^a, Seok Ki

Kim^{a,*}

^aCarbon Resources Institute, Korea Research Institute of Chemical Technology (KRICT), 141,

Gajeongro, Yuseong-gu, Daejeon 34114, Republic of Korea

^bState Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical

Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China

*Corresponding author: <u>skkim726@krict.re.kr</u>

Contents

Table S1. Electronic formation energies of major adsorbents on the Fe carbide and oxide surfaces. 3
Figure S1. The optimized configurations for CO ₂ adsorption on Fe-based surfaces
Figure S2. Relative energy diagram for the formation of vacancy site in $Fe_5C_2(001)$ and $Fe_3O_4(111)$ surface. Representative structures of clean surfaces and surfaces with vacancy site are shown above the diagram. T = 300 °C and P = 2.5 MPa
Figure S3. The optimized unit cell structures of Fe-based surfaces
Table S2. Elementary reaction steps for RWGS reaction over Fe-based surfaces 7
Table S3. Electronic formation energies and vibrational frequencies of adsorbents on the Fe- based surfaces 8
Figure S4. Formation energies of intermediates and transition states, plotted as a function of CO ₂ * formation energy (E _{CO2}) and OH* formation energy (E _{OH}). Scaling parameters are given below the plots
Figure S5. Rate volcano plots for elementary reaction steps in RWGS reaction, plotted as a function of the descriptors, CO_2^* formation energy and OH* formation energy. T = 300 °C and P = 2.5 MPa
Figure S6. The optimized unit cell structures of Fe_3O_4 (111) and Me-Fe ₃ O ₄ (111) surfaces. In the Me-Fe ₃ O ₄ surfaces, element of Fe_{oct2} site is substituted by V, Cr, Mn, Fe, Co, Ni, Cu, and Zn
Figure S7. Bell–Evans–Polanyi correlations for (a) C-H bond, (b) C-O bond, and (c) O-H bond formation steps on Fe-based surfaces
Table S4. Self-interaction parameters for Fe (110) surface. 18
Table S5. Verification of self-interaction parameters by comparing EDFT and Eest at 0.375 ML. 19
Figure S8. CO production rates over Fe (square), Fe_5C_2 (circle), and Fe_3O_4 (triangle) surfaces with various facets plotted as a function of the CO ₂ * and OH* formation energies. T = 300 °C and P = 2.5 MPa

Surface name	Species name	Site name	Formation energy
	CO	Fe	1.154
	CO	С	3.042
	CO	Fe	1.839
E. C	CO_2	С	2.528
re ₃ C	0	Fe	-0.644
	0	С	2.145
	TT	Fe	-0.578
	п	С	-0.319
	CO	Fe	1.351
	co	С	2.766
	CO	Fe	1.863
FacCa		С	3.154
FC5C2	Ο	Fe	-0.319
		С	1.085
	Н	Fe	-0.395
		С	2.817
	CO	Fe	1.286
	CO	Ο	3.334
FacO	CO	Fe	1.819
10304		Ο	1.411
	Ч	Fe	0.187
	11	Ο	2.668
	CO	Fe	1.523
	60	0	2.521
FacOs	CO	Fe	2.242
1.6203		Ο	1.289
	Н	Fe	0.207
		Ο	0.299

Table S1. Electronic formation energies of major adsorbents on the Fe carbide and oxide surfaces.

Figure S1. The optimized configurations for CO₂ adsorption on Fe-based surfaces.

Figure S2. Relative energy diagram for the formation of vacancy site in $Fe_5C_2(001)$ and Fe_3O_4 (111) surface. Representative structures of clean surfaces and surfaces with vacancy site are shown above the diagram. T = 300 °C and P = 2.5 MPa.

Figure S3. The optimized unit cell structures of Fe-based surfaces.

Elementary step				
$H_2_g + _h + _h \rightarrow H_h + H_h$				
$CO_2_g + *_s \rightarrow CO_2_s$				
$CO_s \rightarrow CO_g + *_s$				
$O_s + H_h \leftrightarrow O-H_s + *_h \rightarrow OH_s + *_h$				
$OH_s + H_h \leftrightarrow H\text{-}OH_s + *_h \rightarrow H_2O_g + *_s + *_h$				
$CO_2_s + *_s \leftrightarrow CO-O_s + *_s \rightarrow CO_s + O_s$				
$CO_2_s + H_h \leftrightarrow COO-H_s + *_h \rightarrow COOH_s + *_h$				
$\mathrm{CO}_2_s + \mathrm{H_h} \leftrightarrow \mathrm{H-COO_s} + *_h \to \mathrm{HCOO_s} + *_h$				
$COOH_s + *_s \leftrightarrow CO-OH_s + *_s \rightarrow CO_s + OH_s$				
$\text{HCOO}_s + *_s \leftrightarrow \text{HCO-O}_s + *_s \rightarrow \text{CHO}_s + \text{O}_s$				
$CHO_s + *_h \leftrightarrow H\text{-}CO_s + *_h \rightarrow CO_s + H_h$				
$COOH_s + H_h \leftrightarrow H\text{-}COOH_s + *_h \rightarrow HCOOH_g + *_s + *_h$				
$\text{HCOO}_s + \text{H}_h \leftrightarrow \text{HCOO-H}_s + *_h \rightarrow \text{HCOOH}_g + *_s + *_h$				

Table S2. Elementary reaction steps for RWGS reaction over Fe-based surfaces

Surface	Site	Species	Formation	Fraguancias
name	name	name	energy	Trequencies
Nona	2 00	ИСООЦ	2 427	[3614, 2985, 1731, 1377, 1259,
INOILE	gas	псоон	2.437	1043, 1001, 672, 602]
				[3929, 3026, 3000, 2955, 2947,
None		СЦ	0.010	2825, 2142, 1496, 1472, 1403,
INOILE	gas	$C_2\Pi_6$	0.812	1389, 1381, 1007, 958, 810, 771,
				339, 253]
				[3152, 3122, 3070, 3059, 1640,
None	gas	C_2H_4	2.316	1458, 1358, 1224, 1041, 948,
				935, 823]
None	2 00	СИ	1 2 1 9	[3415, 3319, 1994, 767, 765,
INOILE	gas	$C_2\Pi_2$	4.348	618]
None		CU	0.000	[3450, 3333, 2963, 2801, 2151,
INOne	gas	CH4	0.000	1703, 1272, 502, 242]
None	gas	H_2	0.000	[4422]
None	gas	CO	2.695	[2099]
None	gas	CO_2	2.779	[2311, 1291, 621, 618]
None	gas	H_2O	0.000	[3780, 3694, 1614]
None	gas	O_2	5.825	[1495]
Fe	110	CO	1.184	[1858, 416, 412, 405, 127, 122]
Ea	110	CO.	2.007	[1535, 1080, 659, 405, 271, 176,
ге	110	CO_2	2.007	110, 81, 53]
Fe	110	0	-0.719	[396, 383, 219]
Fe	110	Н	-0.503	[1028, 787, 587]
Fo	110	ЧСОО	1 261	[2994, 1443, 1328, 1274, 956,
re	re 110 HCOO 1.20	1.201	732, 326, 274, 252, 140, 131, 90]	
Fa	110	COOU	1 001	[3508, 1296, 1149, 1005, 637,
ге	110	СООП	1.004	596, 411, 293, 243, 126, 108, 62]
Fe	110	OH	-0.711	[3651, 595, 542, 328, 229, 217]

Table S3. Electronic formation energies and vibrational frequencies of adsorbents on the Febased surfaces

Fe	110	СНО	1.392	[2924, 1178, 868, 651, 464, 315, 263, 243, 166]
Fe	110	O-H	0.272	[1130, 700, 420, 296, 38]
Fe	110	Н-ОН	0.778	[3438, 1593, 1139, 718, 507, 410, 186, 164, 96]
Fe	110	CO-0	2.643	[1663, 621, 387, 329, 314, 238, 187, 131, 102]
Fe	110	СОО-Н	2.906	[1358, 1114, 1054, 681, 553, 380, 296, 248, 161, 86, 67]
Fe	110	H-COO	2.472	[2689, 1604, 1320, 999, 917, 686, 239, 188, 174, 162, 149, 101]
Fe	110	СО-ОН	2.576	[3508, 1351, 1167, 899, 598, 552, 389, 255, 198, 102, 84, 67]
Fe	110	Н-СООН	2.589	[3614, 2985, 1731, 1377, 1259, 1043, 1001, 672, 602]
Fe	110	НСОО-Н	3.103	[3614, 2985, 1731, 1377, 1259, 1043, 1001, 672, 602]
Fe	110	Н-СО	1.826	[2924, 1178, 868, 651, 464, 315, 263, 243, 166]
Fe	110	НСО-О	2.308	[2994, 1443, 1328, 1274, 956, 732, 326, 274, 252, 140, 131, 90]
Fe ₃ C	001	СО	1.154	
Fe ₃ C	001	CO_2	1.839	
Fe ₃ C	001	0	-0.644	
Fe ₃ C	001	Н	-0.578	
Fe ₃ C	001	HCOO	1.190	
Fe ₃ C	001	COOH	1.858	
Fe ₃ C	001	OH	-0.801	
Fe ₃ C	001	СНО	1.403	
Fe ₃ C	001	O-H	0.209	
Fe ₃ C	001	H-OH	0.730	

Fe ₃ C	001	CO-O	2.567
Fe ₃ C	001	СОО-Н	2.817
Fe ₃ C	001	H-COO	2.261
Fe ₃ C	001	СО-ОН	2.510
Fe ₃ C	001	H-COOH	2.507
Fe ₃ C	001	НСОО-Н	3.061
Fe ₃ C	001	H-CO	1.742
Fe ₃ C	001	HCO-O	2.305
Fe ₅ C ₂	001	CO	1.351
Fe ₅ C ₂	001	CO_2	1.863
Fe ₅ C ₂	001	0	-0.319
Fe ₅ C ₂	001	Н	-0.395
Fe ₅ C ₂	001	HCOO	0.834
Fe ₅ C ₂	001	СООН	1.883
Fe ₅ C ₂	001	ОН	-0.661
Fe ₅ C ₂	001	СНО	1.861
Fe ₅ C ₂	001	O-H	0.457
Fe ₅ C ₂	001	H-OH	0.825
Fe ₅ C ₂	001	СО-О	2.806
Fe ₅ C ₂	001	СОО-Н	2.895
Fe ₅ C ₂	001	H-COO	2.363
Fe ₅ C ₂	001	СО-ОН	2.670
Fe ₅ C ₂	001	Н-СООН	2.677
Fe ₅ C ₂	001	НСОО-Н	3.012
Fe ₅ C ₂	001	H-CO	2.137
Fe ₅ C ₂	001	HCO-O	2.440
v_Fe ₃ O ₄	111	CO	0.873
v_Fe ₃ O ₄	111	CO_2	1.222
v_Fe ₃ O ₄	111	Н	-0.769
v_Fe ₃ O ₄	111	COOH	2.261
v_Fe ₃ O ₄	111	OH	-1.233
v_Fe ₃ O ₄	111	0	-0.621

Fe-K	110	CO	0.969
Fe-K	110	CO_2	1.500
Fe-K	110	0	-0.867
Fe-K	110	Н	-0.492
Fe-K	110	HCOO	1.055
Fe-K	110	СООН	1.693
Fe-K	110	ОН	-0.632
FeCu	110	СО	1.338
FeCu	110	CO_2	2.108
FeCu	110	0	-0.272
FeCu	110	Н	-0.271
FeCu	110	HCOO	1.176
FeCu	110	COOH	2.142
FeCu	110	ОН	-0.454
FeCu-K	110	CO	1.008
FeCu-K	110	CO_2	1.607
FeCu-K	110	0	-0.592
FeCu-K	110	Н	-0.351
FeCu-K	110	HCOO	0.905
FeCu-K	110	COOH	1.900
FeCu-K	110	OH	-0.711
Fe-K ₂ O	110	CO_2	1.022
Fe-K ₂ O	110	ОН	-0.517
FeCu-K ₂ O	110	CO_2	1.166
FeCu-K ₂ O	110	OH	-0.369
Fe ₂ O ₃	001	CO	1.523
Fe ₂ O ₃	001	CO_2	1.289
Fe ₂ O ₃	001	0	0.538
Fe ₂ O ₃	001	Н	0.207
Fe ₂ O ₃	001	HCOO	1.453
Fe ₂ O ₃	001	СООН	1.405
Fe ₂ O ₃	001	OH	-0.141

Fe ₂ O ₃	001	СНО	1.762
Fe_2O_3	001	О-Н	1.251
Fe ₂ O ₃	001	H-OH	1.152
Fe ₂ O ₃	001	CO-0	2.923
Fe ₂ O ₃	001	СОО-Н	2.565
Fe ₂ O ₃	001	H-COO	2.501
Fe_2O_3	001	СО-ОН	2.696
Fe ₂ O ₃	001	Н-СООН	2.778
Fe ₂ O ₃	001	НСОО-Н	3.359
Fe ₂ O ₃	001	H-CO	2.749
Fe ₂ O ₃	001	HCO-O	3.119
Fe ₃ O ₄	111	СО	1.286
Fe ₃ O ₄	111	CO_2	1.411
Fe ₃ O ₄	111	0	0.246
Fe ₃ O ₄	111	Н	0.187
Fe ₃ O ₄	111	HCOO	0.899
Fe ₃ O ₄	111	COOH	2.002
Fe ₃ O ₄	111	OH	-0.508
Fe ₃ O ₄	111	СНО	1.054
Fe ₃ O ₄	111	O-H	0.900
Fe ₃ O ₄	111	H-OH	1.039
Fe ₃ O ₄	111	CO-0	2.764
Fe ₃ O ₄	111	СОО-Н	3.017
Fe ₃ O ₄	111	H-COO	2.481
Fe ₃ O ₄	111	СО-ОН	2.776
Fe ₃ O ₄	111	H-COOH	3.248
Fe ₃ O ₄	111	НСОО-Н	3.196
Fe ₃ O ₄	111	H-CO	2.408
Fe ₃ O ₄	111	HCO-O	2.373
v_Fe ₅ C ₂	111	CO	1.074
v_Fe ₅ C ₂	111	CO_2	1.482
v_Fe ₅ C ₂	111	Ο	-0.493

111	OH	-0.693
111	CO	1.204
111	CO_2	1.520
111	OH	-0.331
111	0	0.328
111	CO_2	1.051
111	OH	-0.703
111	CO_2	1.841
111	OH	-0.418
111	CO_2	1.394
111	OH	-1.376
111	CO_2	2.272
111	OH	-0.059
111	CO_2	2.023
111	OH	-0.432
111	CO_2	1.672
111	OH	-0.391
	 111 	111ОН111CO111CO2111OH111OH111CO2111OH111CO2111OH111CO2111OH111CO2111OH111CO2111OH111CO2111OH111CO2111OH111CO2111OH111CO2111OH111CO2111OH111CO2111OH

Figure S4. Formation energies of intermediates and transition states, plotted as a function of CO_2^* formation energy (E_{CO2}) and OH* formation energy (E_{OH}). Scaling parameters are given below the plots.

Figure S5. Rate volcano plots for elementary reaction steps in RWGS reaction, plotted as a function of the descriptors, CO_2^* formation energy and OH* formation energy. T = 300 °C and P = 2.5 MPa.

Figure S6. The optimized unit cell structures of Fe_3O_4 (111) and $Me-Fe_3O_4$ (111) surfaces. In the Me-Fe₃O₄ surfaces, element of Fe_{oct2} site is substituted by V, Cr, Mn, Fe, Co, Ni, Cu, and Zn.

Figure S7. Bell–Evans–Polanyi correlations for (a) C-H bond, (b) C-O bond, and (c) O-H bond formation steps on Fe-based surfaces.

Surface	Adsorbents	Self-interaction parameter
Fe	CO ₂	8.549
Fe	СО	2.106
Fe	0	6.018
Fe	НСОО	4.699
Fe	СООН	9.012
Fe	ОН	3.177
Fe	СНО	3.195

Adsorbate	CO ₂ *	CHO*	O*	OH*
E _{DFT} (eV)	1.947	1.349	-0.720	-0.767
E _{est} (eV)	1.870	1.366	-0.802	-0.807
$E_{diff} (eV)^{c}$	0.077	0.017	0.082	0.040

Table S5. Verification of self-interaction parameters by comparing E_{DFT}^{a} and E_{est}^{b} at 0.375 ML.

^a Electronic formation energy at 0.375 ML calculated from DFT calculation.

^b Electronic formation energy at 0.375 ML predicted using interaction parameters.

^c $E_{diff} = |E_{DFT} - E_{est}|$

Figure S8. CO production rates over Fe (square), Fe_5C_2 (circle), and Fe_3O_4 (triangle) surfaces with various facets plotted as a function of the CO_2^* and OH^* formation energies. T = 300 °C and P = 2.5 MPa.