Supporting Information

MoO₃/MoO₂-CP Self-Supporting Heterostructure for Modification of Lithium-Sulfur Batteries

Weiwei Yang,^a Yi Wei,^a Qian Chen,^a Shengjian Qin,^b Jinghan Zuo,^a Shengdong Tan,^a Pengbo Zhai,^a Shiqiang Cui,^a Haowu Wang,^a Chunqiao Jin,^c Jing Xiao,^a Wei Liu,^a Jiaxiang Shang,^a Yongji Gong*^a

^aSchool of Materials Science and Engineering, Beihang University, 100191, Beijing, China.
^bSchool of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei Province 050043, China.

^cCollege of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

E-mail: yongjigong@buaa.edu.cn

Experimental

Synthesis of the MoO₃-CP Composite

The MoO₃-CP composite was obtained by a one-step hydrothermal reaction. Firstly, 0.125 g of molybdenum powder (Aladdin, 99.9 %) was added to 30 mL of deionized (DI) water, and then 6.25 mL H_2O_2 (Aladdin, AR, 30 %) was dripped to the solution slowly. When the color of the solution completely turns yellow, one piece of carbon paper (CP) was added into the solution. Finally, the solution was transferred to a 100 mL Teflon-lined stainless-steel autoclave and heated at 180 °C for 12 h. When the temperature of the autoclave is cooled to room temperature, the MoO₃-CP composite was washed with DI water and ethanol for three times, respectively. The prepared samples were dried at 40 °C for 60 min.

Synthesis of the MoO₃/MoO₂-CP and MoO₂-CP composite

The NH₃ atmosphere treatment was applied to deal with the MoO₃-CP to obtain the desired composite. The MoO₃/MoO₂-CP composite was achieved by thermal reduction of MoO₃-CP at 400 $^{\circ}$ C for 1 h in an NH₃ atmosphere with a flow of 20 sccm. MoO₂-CP can be obtained in the same way while the sintering temperature is changed to 500 $^{\circ}$ C.

Preparation of Li₂S₈

0.0688 g Li₂S and 0.3366 g S were mixed with 5 mL electrolyte composed of 1 M LiTFSI in a mixture of 1,3-dioxolane (DOL) and dimethoxymethane (DME) (v/v = 1:1) with 1 % LiNO₃. The mixture was stirred at 60 °C for 24 h to obtain a homogeneous dispersion of Li₂S₈. The synthesized Li₂S₈ was added dropwise to the surface of MoO₃-

CP, MoO_3/MoO_2 -CP and MoO_2 -CP as a positive electrode, respectively, and labeled as MoO_3 -CP-Li₂S₈, MoO_3/MoO_2 -CP-Li₂S₈ and MoO_2 -CP-Li₂S₈. The whole process was performed in an Ar-filed glove box while the moisture and oxygen levels were both less than 0.1 ppm.

Material characterization

XRD measurements were performed on X-ray diffractometer (Rigaku D/max2500PC) equipped with Cu K α radiation (λ =0.15405 nm). SEM images were observed by Hitachi SU8020 field emission scanning electron microscop. TEM, HRTEM and EDX were performed under the JEOL JEM-2100F. Raman spectroscopies (Renishaw inVia) of samples were tested at Horiba Jobin-Yvon LabRAM Aramis Raman microscopy. UV optical absorption spectra was characterized by Lambda 35 (Perkin Elmer, USA) UV– vis spectrophotometer. XPS measurements were conducted on a ESCALAB 250Xi instrument.

Electrochemical measurements

The electrochemical performances were investigated by a standard CR2025 coin cell using lithium foil as the anode, a microporous polypropylene separator (Celgard 2400) as the separator, and the electrolyte was composed of 1 M LiTFSI in a mixture of 1,3-dioxolane (DOL) and dimethoxymethane (DME) (v/v = 1:1) with 1% LiNO₃. The amount of electrolyte is about 40 μ L for each cell. The synthesized Li₂S₈ (1 mg) was added dropwise to the surface of MoO₃-CP (MoO₃ ~0.5 mg), MoO₃/MoO₂-CP (MoO₃ ~0.5 mg) and MoO₂-CP (MoO₂ ~ 0.5 mg) as the cathode, respectively, and labeled as MoO₃-CP-Li₂S₈, MoO₃/MoO₂-CP-Li₂S₈ and MoO₂-CP-Li₂S₈. The areal

density of MoO₃/MoO₂ on the CP is 0.32 mg cm⁻² (Φ_{CP} =1.4 cm). Galvanostatic charge/discharge behavior were measured by Land CT2001A cell test system at different current densities from 0.05 to 5 C (1 C = 1675 mA g⁻¹) between 2.8 and 1.8 V versus Li⁺/Li at 25 °C. CV was investigated by using CHI760E electrochemical workstation at a scanning rate of 0.05 mV·s⁻¹ within the range of 1.8 to 2.8 V at 25 °C. Electrochemical impedance spectroscopy (EIS) was performed at various overpotentials with frequency from 0.01 to 10⁵ Hz with an AC voltage of 5 mV.

Density functional theory calculations

All the spin-polarized DFT-D2 calculations¹ were conducted using the "Vienna *ab initio* simulation package" (VASP 5.4.1),^{2,3} applying the generalized gradient correlation functional.⁴ A plane-wave basis set with cut-off energy 400 eV within the framework of the projector-augmented wave method was employed.⁵ The Gaussian smearing width was set to 0.2 eV. The Brillouin zone was sampled with a $3 \times 3 \times 1$ Monkhorst pack. All atoms were converged to 0.03 eV Å⁻³.

Fig. S1 SEM images of the prepared samples. (a) MoO_3 -CP. (b) MoO_3 -CP sintered at 400 ° C for 1 h under NH₃ conditions. (c) SEM image of MoO_3 without CP.

Fig. S2 The X-ray diffraction (XRD) pattern of MoO_3 treated by H_2 at 400 °C for 1 h.

Fig. S3 SEM images of MoO_3 -CP treated by H_2 at 500 °C for 1 h. (a) SEM images of MoO_3 -CP. (b) Enlarged image of MoO_3 -CP.

Fig. S4 Corresponding TEM imag and elemental mapping of O , Mo and N of MoO_3/MoO_2 , respectively.

Fig. S5 XRD spectra of MoO₃ sintered at 400 °C for 0.5-1.5 h.

Fig. S6 (a) Mo 3d spectra of MoO_3. (b) Mo $3p_{3/2}$ spectra of MoO_3/MoO_2.

cps/eV	- 8- - - 6-					Spectrum 1	
		Element	Line Type	k Factor	Absorption Correction	wt %	wt % Sigma
	-	N	K series	1.914	1.00	0.00	0.00
	4-0	0	K series	1.100	1.00	22.41	0.35
	- T	Мо	L series	0.986	1.00	77.59	0.35
	-	Total				100.00	
	2- - - 0-	Mo Mo					
				.5 20	25		35

Fig. S7 Energy dispersive X-ray spectroscopy (EDX) of MoO_2/MoO_3

The process of static adsorption is used to further analysis the adsorptivity of MoO_3/MoO_2 heterostructure, pure MoO_2 and pure MoO_3 (Fig. S8). The static adsorption tests⁶ were carried out in 10 mL Li₂S₄ (10 mM) solutions by using different materials with similar surface area. The whole process of adsorption lasts for 6 h. Owing to the use of CP as the self-supporting electrode material, the area of electrode is standard to ensure the quality of adsorbent in each Li₂S₄ solution. The experimental phenomena indicated that the distinct bulk adsorptivity with a sequence of MoO_3/MoO_2 -CP> MoO_3 -CP > MoO_2 -CP > CP, which is obviously correlated to the number of available surface polar sites. This illustrates that the MoO_3/MoO_2 composite has stronger adsorption capacity for Li₂S₄ compared with pure MoO_3 and MoO_2 , respectively. Although the surface area of MoO_3 is reduced after sintering, the appearance of interfaces between MoO_3 and MoO_2 with high activity will not sacrifice its overall adsorption ability to LiPS.

Fig. S8 Lithium polysulfide (Li₂S₄) adsorption in DOL/DME solution for 6 h. (a) original Li₂S₄ solution. (b) with carbon paper (CP). (c) with MoO₃-CP. (d) with MoO₃/MoO₂-CP. (e) with MoO₂-CP. (P.

Fig. S9 Charge/discharge curves of MoO_3 -CP-Li₂S₈ at 0.05, 0.1, 0.25, 0.5 and 1 C.

Fig. S10 Rate performance of MoO_3/MoO_2 -CP host at 0.05, 0.1, 0.25, 0.5, 1, 2.5 and 5 C.

Fig. S11 Rate capabilities of $CP-Li_2S_8$ cathodes at 0.05, 0.1, 0.25, 0.5, 1, 2.5 and 5 C.

Fig. S12 Long cycling performance of CP-Li $_2S_8$ cathode at 0.5 C.

References

- 1 S.J. Grimme, J. Comput. Chem. 2006, 27, 1787-1799.
- 2 G. Kresse, J.J. Furthmuller, Phys. Rev. B 1996, 54, 11169-11186.
- 3 G. Kresse, J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15-50.
- 4 J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
- 5 P.E. Blochl, Phys. Rev. B 1994, 50, 17953-17979.
- 6 L. Ma, R. Chen, G. Zhu, Y. Hu, Y. Wang, T. Chen, J. Liu, Z. Jin, ACS Nano 2017, 11, 7274-7283.